首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Turnover times of radioactive glucose were shorter in paddy soil (4–16 min) than in Lake Constance sediment (18–62 min). In the paddy soil, 65–75% of the radioactive glucose was converted to soluble metabolites. In the sediment, only about 25% of the radioactive glucose was converted to soluble metabolites, the rest to particulate material. In anoxic paddy soil, the degradation pattern of position-labelled glucose was largely consistent with glucose degradation via the Embden-Meyerhof-Parnas (EMP) pathway followed by methanogenic acetate cleavage: CO2 mainly originated from C-3,4, whereas CH4 mainly originated from C-1 and C-6 of glucose. Acetate-carbon originated from C-1, C-2 and C-6 rather than from C-3,4 of glucose. In both paddy soil and Lake Constance sediment acetate and CO2 were the most important early metabolites of radioactive glucose. Other early products included propionate, ethanol/butyrate, succinate, and lactate, but accounted each for less than 1–8% of the glucose utilized. The labelling of propionate by [3,4-14C]glucose suggests that it was mainly produced from glucose or lactate rather than from ethanol. Isopropanol and caproate were also detectable in paddy soil, but were not produced from radioactive glucose. Chloroform inhibited methanogenesis, inhibited the further degradation of radioactive acetate and resulted in the accumulation of H2, however, did not inhibit glucose degradation. Since acetate was the main soluble fermentation product of glucose and was produced at a relatively high molar acetate: CO2 ratio (2.5:1), homoacetogenesis appeared to be the most important glucose fermentation pathway.  相似文献   

2.
Abstract Washed whole cells of Methanospirillum hungatei incubated in TES buffer retained methanogenic activity in the absence of any reducing agents. Washed cells grown with 80% H2-20% CO2 and acetate produced methane from H2/CO2 and 50 mM formate at 1.1 to 1.8 and 15 μmol methane · h−1· mg−1 protein, respectively. Cadmium at a concentration of 15 μM and 50 μM mercury, copper or zinc completely inhibited methane production from H2/CO2 by M. hungatei . The chelating agent, EDTA, protected the cells from inhibition by cadmium but acetate and citrate did not. The activity of formate dehydrogenase and hydrogenase remaining in cells after incubation with copper, mercury, zinc or cadmium was reduced with formate dehydrogenase being the more sensitive.  相似文献   

3.
Abstract Suspensions of maltose-grown cells of the hyperthermophilic archaeon Pyrococcus furiosus , when incubated at 90°C with 35 mM [1-13C]glucose or [3-13C]glucose, consumed glucose at a rate of about 10 nmol min−1 (mg protein)−1. Acetate (10 mM), alanine (3 mM), CO2 and H2 were the fermentation products. The 13C-labelling pattern in alamine and acetate were analyzed. With [1-13C]glucose the methyl group of both alanine and acetate was labelled; with [3-13C]glucose only the carboxyl group of alanine was labelled whereas acetate was unlabelled. Extracts of maltose-grown cells contained glucose isomerase (12.8 U mg−1, 100°C), ketohexokinase (0.23 U mg−1, 100°C), and fructose 1-phosphate aldolase (0.06 U mg−1, 100°C). Enzymes catalyzing the formation of fructose 1,6-bisphosphate from fructose 1-phosphate or fructose 6-phosphate could not be detected. As publihed previously by our group and other authors P. furiosus also contains enzymes of glyceraldehyde conversion to 2-phosphoglycerate according to a non-phosphorylated Entner-Doudoroff pathway, of dihydroxyacetone phosphate conversion to 2-phosphoglycerate according to the Embden-Meyerhof pathway, and of 2-phosphoglycerate conversion - via pyruvate - to acetate and alanine. Based on the enzyme activities in P. furiosus , the following pathway for glucose degradation to alanine and acetate in cell suspensions is proposed which can explain the [13C]glucose labelling data: glucose→ fructose → fructose 1- phosphate → dihydroxyacetone phosphate + glyceraldehyde and further conversion of both trioses to alanine and acetate via pyruvate.  相似文献   

4.
Abstract: Chains of lumbar sympathetic ganglia from 15-day-old chicken embryos were incubated for 4 h at 36°C in a bicarbonate-buffered salt solution equilibrated with 5% CO2-95% O2. Glucose (1–10 m M ), lactate (1–10 m M ), [U-14C]glucose, [1-14C]glucose, [6-14C]glucose, and [U-14C]lactate were added as needed. 14CO2 output was measured continuously by counting the radioactivity in gas that had passed through the incubation chamber. Lactate reduced the output of CO2 from [U-14C]glucose, and glucose reduced that from [U-14C]lactate. When using uniformly labeled substrates in the presence of 5.5 m M glucose, the output of CO2 from lactate exceeded that from glucose when the lactate concentration was >2 m M . The combined outputs at each concentration tested were greater than those from either substrate alone. The 14CO2 output from [1-14C]glucose always exceeded that from [6-14C]glucose, indicating activity of the hexose monophosphate shunt. Lactate reduced both of these outputs, with the maximum difference between them during incubation remaining constant as the lactate concentration was increased, suggesting that lactate may not affect the shunt. Modeling revealed many details of lactate metabolism as a function of its concentration. Addition of a blood-brain barrier to the model suggested that lactate can be a significant metabolite for brain during hyperlactemia, especially at the high levels reached physiologically during exercise.  相似文献   

5.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1, (3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-: 14C]alanine, [1-14C]glutamate, and [1, (3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate, [1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

6.
Hydrogen-using bacteria in a methanogenic acetate enrichment culture   总被引:2,自引:0,他引:2  
A rcher , D.B. 1984. Hydrogen-using bacteria in a methanogenic acetate enrichment culture. Journal of Applied Bacteriology 56 , 125–129.
In a study of the anaerobic utilization of acetate, an enrichment culture of sewage sludge organisms was initiated with calcium acetate as the sole carbon and energy source. A mixed bacterial population became established from which 14 anaerobic species were isolated. Two of the isolates were methanogenic bacteria but only one of these, Methanosarcina barkeri , utilised acetate as an energy source in axenic culture. The other methanogenic isolate, a Methanobacterium sp., utilised H2/CO2 but not acetate. A third methanogen, which was morphologically identical to Methanothrix soehngenii , was detected in the enrichment but was not obtained in monoculture. 2-Bromoethanesulphonate, a specific inhibitor of methanogenesis. completely inhibited the enrichment at a concentration of 10 μmol/1. Addition of H2 formate or methanol to the enrichment did not affect the rate of methanogenesis. An H2-utilizing Desulfovibrio sp. was also isolated from the enrichment.  相似文献   

7.
Abstract A thermophilic acetate-decarboxylating methanogenic bacterium was isolated from a laboratory-scale 60°C sludge digestor. Cells form straight filaments with flat to blunted ends normally consisting of 2–3 cells held together by a sheath-like outer cell wall. The organism uses acetate, H2-CO2 and formate for methanogenesis and growth. With acetate as the sole methanogenic substrate, almost all of the radioactivity from methyl-labelled acetate appeared as methane. Acetate was converted to methane in equimolar amounts with a doubling time of 3 days.  相似文献   

8.
Abstract Serial dilutions of methanogenic sludges in propionate medium gave a methanogenic non-acetoclastic enrichment degrading 1 mol of propionate to 1.6 mol of acetate and 0.17 mol of methane, with a transient accumulation of butyrate. NMR recordings showed the conversion of [2-13C]- and [3-13C]-propionate to [3-13C]- and [4-13C]-butyrate, respectively, thus demonstrating a reductive carboxylation of propionate to butyrate. The labelling found in the accumulated acetate and fermentation balances also suggested that reductive carboxylation was the major pathway involved in propionate conversion to acetate.  相似文献   

9.
Abstract A method is proposed that allows the enrichment and most probable number estimation of H2/CO2-utilizing acetogenic bacteria. It is based on the difference in acetate production for serial dilutions incubated under either a test H2/CO2 (4:1), or a control N2/CO2 (4:1) headspace atmosphere. A nutritionally non-selective medium was used, containing bromoethane-sulfonic acid as inhibitor of methanogenic archaea and 10% pre-incubated clarified rumen fluid. Acetogenic bacteria were enumerated in rumen and hindgut contents of animals and in human feces. They ranged from below 102 to above 108 per gram wet weight gut content and their population levels were the highest in the absence of methanogenesis. The method described therein should prove useful to better understand the diversity and ecological importance of dominant gut acetogens.  相似文献   

10.
In the CAM plants, Kalanchoë tubiflora (Harvey) Hasset, Sedum morganianum E. Walth and Sedum rubrotinctum R. T. Clausen, the effects of CO2 concentrations on the light-dependent 14C transfer from the nocturnally synthetized [14C]-malic acid to starch have been studied. CO2 concentrations up to 5 × 103 μ1 1–1 did not inhibit this carbon transfer. Higher CO2 concentrations, however, were increasingly inhibitory. At 104 μl 1–1 CO2, the carbon transfer was practically prevented.
The malic acid consumption in the light showed the same response to CO2 concentrations as the [l4C]-transfer. Photosynthesis itself was not inhibited by the CO2 concentrations applied. It is assumed that, during phase III of CAM, light controls the internal CO2 concentration via photosynthesis; and that the internal CO2 concentration then controls the rate of malate decarboxylation.  相似文献   

11.
Uptake and turnover of acetate in hypersaline environments   总被引:2,自引:0,他引:2  
Abstract: Acetate uptake and turnover rates were determined for the heterotrophic community in hypersaline environments (saltern crystallizer ponds, the Dead Sea) dominated by halpphilic Archaea. Acetate was formed from glycerol, which is potentially the major available carbon source for natural communities of halophilic Archaea. Values of [ K t+ S n] (the sum of the substrate affinity and the substrate concentration present in situ) for acetate measured in saltern crystallizer ponds were around 4.5–11.5 μM, while in the Dead Sea during a Dunaliella bloom values up to 12.8 μM were found. Maximal theoretical rates ( V max) of acetate uptake in saltern crystallizer ponds were 12–56 nmol l−1 h−1, with estimated turnover times for acetate ( T t) between 127–730 h at 35°C. V max values measured in the Dead Sea were between 0.8 and 12.8 nmol l−1 h−1, with turnover times in the range of 320–2190 h. V max values for acetate were much lower than those for glycerol. Comparisons with pure cultures of halophilic Archaea grown under different conditions showed that the natural communities were not adapted for preferential use of acetate. Both in natural brines and in pure cultures of halophilic Archaea, acetate incorporation rates rapidly decreased above the optimum pH value, probably since acetate enters the cell only in its unionized form. The low affinity for acetate, together with low potential utilization rates result in the long acetate turnover times, which explains the accumulation of acetate observed when low concentrations of glycerol are supplied as a nutrient to natural communities of halophilic Archaea.  相似文献   

12.
Abstract Interspecies H2 transfer within methanogenic bacterial associations (MBA) accounted for 95–97% of the conversion of 14CO2 to 14CH4 in anoxic paddy soil. Only 3–5% of the 14CH4 were produced from the turnover of dissolved H2. The H2-syntrophic MBA developed within 5 days after the paddy soil had been submerged and placed under anoxic atmosphere. Afterwards, both the contribution of MBA to H2-dependent methanogenesis and the turnover of dissolved H2 did not change significantly for up to 7 months of incubation. However, while the rates of H2-dependent methanogenesis stayed relatively constant, the rates of total methanogenesis decreased. The contribution of MBA to H2-dependent methanogenesis was further enhanced to 99% when the temperature was shifted from 30°C to 17°C, or when the soil had been planted with rice. This enhancement was partially due to an increased utilization of dissolved H2 by chloroform-insensitive non-methanogenic bacteria, most probably homoacetogens, so that CH4 production was almost completely restricted to H2-syntrophic MBA. The activity of MBA, as measured by the conversion of 14CO2 to 14CH4, was stimulated by glucose, lactate, and ethanol to a similar or greater extent than by exogenous H2. Propionate and acetate had no effect.  相似文献   

13.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

14.
Washed bacterial suspensions obtained from the pig hindgut were incubated under 13CO2 in a buffer containing NaH13CO3 and carbohydrates. Incorporation of 13C into short chain fatty acids was assayed by quantitative nuclear magnetic resonance. The effects of different levels of H2 added to the gas phase (0, 20 and 80% v/v) and of the specific methanogenesis inhibitor 2-bromoethane-sulphonic acid (BES) were determined. In control incubations increasing the concentration of H2 markedly increased methane production. Single- and double-labelled acetate and butyrate were formed in all incubations. In the absence of BES, increasing H2 significantly increased the incorporation of 13CO2 into butyrate and the proportion of double-labelled acetate in total labelled acetate. The addition of BES proved to be very successful as a methane inhibitor and greatly enhanced the amount of mono- and double-labelled acetate, especially at the highest H2 partial pressure. The results suggest that methanogenesis inhibited both routes of reductive acetogenesis, i.e. the homoacetate fermentation of hexose (represented for the most part by single labelling) and the synthesis of acetate from external CO2 and H2 (represented mostly by double labelling). A highly significant interaction between BES and H2 concentration was observed. At the highest pH2 BES increased the proportion of labelled acetate in total acetate from 17.1% for the control to 50.9%. It was concluded that although acetogenesis and methanogenesis can occur simultaneously in the pig hindgut, reductive acetogenesis may become a significant pathway of acetate formation in the absence of methanogenesis.  相似文献   

15.
Abstract In cell suspensions of the methanogenic bacterium strain Gö1 or Methanosarcina barkeri H2 formation from methanol in the presence of 2-bromoethanesulfonic acid (BES) was strictly dependent on sodium ions; apparent K S for Na+, 1.3±0.3 mM.H2 formation was inhibited by the uncoupler tetrachlorosalicylanilide (TCS), but this inhibition could be temporarily overcome, when a sodium pulse (100 mM) was given to the cell suspension. On the other hand, H2 formation from formaldehyde in the presence of BES (rate: 300 nmol H2/h·mg protein as compared to 25 nmol H2/h·mg protein from methanol) was not sodium-dependent, not TCS-sensitive and not inhibited by addition of monensin. H2 formation was accompanied by CO2 formation in stoichiometric amounts, 3 H2:1 CO2 for methanol and 2 H2:1 CO2 for formaldehyde oxidation.  相似文献   

16.
Winter wheat (Triticum aestivum L. cv. Hereward) plants were grown for 35 d either at 350 μ mol mol–1 CO2 or at 650 μ mol mol–1 CO2. Lipid synthesis was studied in these plants by incubating the 5th leaf on the main stem with [1–14C]acetate. Increased CO2 concentrations did not significantly affect the total incorporation of radiolabel into lipids of whole leaf tissue, but altered the distribution for individual lipid classes. Most noticeable amongst acyl lipids was the reduction in labelling of diacylglycerol and a corresponding increase in the proportion of phosphatidylcholine labelling. In the basal regions, there were similar changes and, in addition, phosphatidylglycerol labelling was particularly increased following growth in an enriched CO2 atmosphere. The stimulation of labelling of the mitochondrial-specific lipid, diphosphatidylglycerol, prompted an examination of the mitochondrial population in wheat plants. Mitochondria were localized in intact wheat sections by immunolabelling for the mitochondrial-specific chaperonin probe. Growth in elevated CO2 doubled the number of mitochondria compared to growth in ambient CO2. Fatty acid labelling was also significantly influenced following growth at elevated CO2 concentrations. Most noticeable were the changes in 16C:18C ratios for the membrane lipids, phosphatidylcholine, phosphatidylglycerol and monogalactosyldiacylglycerol. These data imply a change in the apportioning of newly synthesized fatty acids between the 'eukaryotic' and 'prokaryotic' pathways of metabolism under elevated CO2.  相似文献   

17.
Clostridium pasteurianum fermented glucose to acetate, butyrate, CO2 and H2. In batch cultures the fermentation pattern was only slightly affected by culture pH over the range 8·0 to 5·5. The acetate/butyrate ratio was always higher than or equal to one. Between 2·14 and 2·33 mol H2 was produced per mol glucose fermented. At unregulated pH, more butanol and less butyrate was formed. In a carbon-limited chemostat, the steady-state acetate/butyrate ratio was always lower than one. H2 production was approximately 1·70 mol per mol glucose consumed. Substantial amounts of extracellular protein were formed. With decreasing pH, acetate and formate production decreased, while H2 production was highest at pH 6.0. With increasing dilution rate ( D ), the product spectrum hardly changed, but more biomass was formed. Y glucosemax and Y ATPmax were 55·97 and 31·48 g dry weight per mol glucose or ATP respectively. With increasing glucose input the formation of fatty acids and H2 slightly decreased.
Continuous cultures fermented mannitol to acetate, butyrate, butanol, CO2 and H2. With acetate as co-substrate, butanol production and molar growth yields, Y mannitol and Y ATP, markedly decreased, while the butyrate and H2 production increased. The latter reached a value of 2·21 mol H2 per mol mannitol consumed.  相似文献   

18.
Abstract— In the lobster nerve the fixation of CO, at various levels of pCO2 was studied by the incorporation of [l-14C]pyruvate. Incorporation of 14C was solely dependent on CO2 fixation since the C-1 was decarboxylated in the formation of acetyl-CoA. Paired-nerve studies with [2-14C]pyruvate afforded a study of pyruvate metabolism in the lobster nerve. [I14C]Pyruvate was incorporated to nearly the same extent at all levels of pCO2 including zero pCO2, a finding that suggested metabolic recycling of CO2. The magnitude of the metabolic recycling of C-1 of pyruvate or pyruvate dismutation was estimated to be nearly 20 per cent of total CO2 fixation. Re-evaluation of the relative contributions of the CO2 fixation. and acetyl-CoA pathways on the basis of more extensive data gave a ratio of 2:3.
The pCO2 affected synthesis of ACh and the level of citrate. With increasing pCO2, the specific radioactivity of ACh decreased much more than the content of ACh. The decrease in the specific radioactivity of ACh but not that of citrate further suggested metabolic compartmentation. The implication of these findings is discussed.
Alanine functioned as a metabolic sink for the incorporated pyruvate. Pyruvate levels were estimated to be approximately 0.1 nmol/mg of protein.  相似文献   

19.
Abstract A defined 3-chlorobenzoate-degrading methanogenic consortium was constructed by recombining key organisms isolated from a 3-chlorobenzoate-degrading methanogenic sludge enrichment. The organisms comprise a three-tiered food chain which includes: (1) reductive dechlorination of 3-chlorobenzoate; (2) oxidation of benzoate to acetate, H2 and CO2; (3) removal of H2 plus CO2 by conversion into methane. The defined consortium, consisting of a dechlorinating organism (DCB-1), a benzoate degrader (BZ-1) and a lithotrophic methanogen ( Methanospirillum strain PM-1) grew well in a basal salts medium supplemented with 3-chlorobenzoate (3.2 mM) as the sole energy source. The chlorine released from the aromatic ringe was recovered in stoichiometric amounts as the chloride ion. The reducing power required for reductive dechlorination was obtained from the hydrogen produced in the acetogenic oxidation of benzoate. One-third of the benzoate-derived hydrogen was recycled via the reductive dechlorination of 3-chlorobenzoate, indicating that the consortium operated as a food web rather than a food chain.  相似文献   

20.
Methanogenesis in the hypersaline Solar Lake (Sinai)   总被引:2,自引:0,他引:2  
Abstract Enrichment studies on microbial mat sediments (potential stromatolites) from the hypersaline Solar Lake (Sinai) indicated high numbers of methanogenic bacteria (up to 105 ml−1 sediment) in spite of the high sulfate reduction rate, sulfate concentration and salinity. Among H2/CO2, acetate and monomethylamine, the methylated amine was the preferred substrate. The predominant species enriched was a Methanosarcina sp. The findings indicate that methanogenic bacteria play an important role in hypersaline sulfate-enriched anoxic sediments and stromatolithic microbial mats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号