首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The csgA mutations of Myxococcus xanthus (formerly known as spoC) inhibit sporulation as well as rippling, which involves ridges of cells moving in waves. Sporulating revertants of CsgA cells were isolated by direct selection, since spores are much more resistant to heat and ultrasonic treatment than are vegetative cells. The revertants fell into seven groups on the basis of phenotype and the chromosomal location of the suppressor alleles. Group 1 contained one allele that was a back mutation of the original csgA mutation. Group 2 contained two linked alleles that were unlinked to the csgA locus and restored fruiting-body formation, sporulation, and rippling. Group 3 revertants regained the ability to sporulate in fruiting bodies but not the ability to ripple. Revertants in groups 4 to 7 were able to sporulate but unable to form fruiting bodies or ripples. The suppressors were all found to be bypass suppressors even though they were not selected as such in most cases. The csgA mutation prevented expression of several developmentally regulated promoters, each fused to a lacZ reporter gene and assayed by beta-galactosidase production. In four of five suppressor groups (groups 4 to 7), expression of each of these csgA-dependent fusions was restored, which suggests that bypass suppression restores developmental gene expression near the point at which expression is disrupted in CsgA mutants. Bypass suppression did not restore production of C factor, and morphological manifestations of development such as rippling and fruiting-body formation were usually abnormal. One interpretation of these results is that C factor has multiple functions and few suppressors can compensate for all of them.  相似文献   

2.
Insertion of an internal DNA fragment into the act1 gene, which encodes one of several sigma(54)-activator proteins in Myxococcus xanthus, produced a mutant defective in fruiting body development. While fruiting-body aggregation appears normal in the mutant, it fails to sporulate (<10(-6) the wild-type number of viable spores). The A and C intercellular signals, which are required for sporulation, are produced by the mutant. But, while it produces A-factor at levels as high as that of the wild type, the mutant produces much less C-signal than normal, as measured either by C-factor bioassay or by the total amount of C-factor protein detected with specific antibody. Expression of three C-factor-dependent reporters is altered in the mutant: the level of expression of Omega4414 is about 15% of normal, and Omega4459 and Omega4403 have alterations in their time course. Finally, the methylation of FrzCD protein is below normal in the mutant. It is proposed that Act1 protein responds to C-signal reception by increasing the expression of the csgA gene. This C-signal-dependent increase constitutes a positive feedback in the wild type. The act1 mutant, unable to raise the level of csgA expression, carries out only those developmental steps for which a low level of C-signaling is adequate.  相似文献   

3.
4.
Five independent DNA microarray experiments were used to study the gene expression profile of a 5-day Bacillus subtilis air-liquid interface biofilm relative to planktonic cells. Both wild-type B. subtilis and its sporulation mutant (DeltaspoIIGB::erm) were investigated to discern the important biofilm genes (in the presence and absence of sporulation). The microarray results indicated that suspension cells were encountering anaerobic conditions, and the air-liquid interface biofilm was metabolically active. For the statistically significant differential expression (P < 0.05), there were 342 genes induced and 248 genes repressed in the wild-type biofilm, whereas 371 genes were induced and 128 genes were repressed in the sporulation mutant biofilm. The microarray results were confirmed with RNA dot blotting. A small portion of cells (1.5%) in the wild-type biofilm formed spores and sporulation genes were highly expressed. In the biofilm formed by the sporulation mutant, competence genes (comGA, srfAA, srfAB, srfAD, and comS) were induced which indicate a role for quorum sensing (bacterial gene expression controlled by sensing their population) in biofilms. There were 53 genes consistently induced in the biofilms of both the wild-type strain and its spoIIGB mutant-those genes have functions for transport, metabolism, antibiotic production-and 26 genes with unknown functions. Besides the large number of genes with known functions induced in the biofilm (121 genes in the wild-type biofilm and 185 genes in the sporulation mutant biofilm), some genes with unknown functions were also induced (221 genes in the wild-type biofilm and 186 genes in the sporulation mutant biofilm), such as the yve operon which appears to be involved in polysaccharide synthesis and the ybc operon which inhibits the growth of competitors for nutrients. A knockout mutant of yveR was constructed, and the mutant showed major defects in biofilm maintenance. Both the wild-type strain and its sporulation mutant formed normal biofilms, suggesting complete sporulation is not necessary for biofilm formation. The expression profiles of these two strains share more repressed genes than induced genes, suggesting that the biofilm cells repress similar pathways in response to starvation and high cell density.  相似文献   

5.
The csgA gene produces an intercellular signal during fruiting body formation of the myxobacterium Myxococcus xanthus. Sporulating pseudorevertants were isolated to allow us to understand the mechanism by which CsgA is perceived by cells and used to regulate developmental gene expression. Two strains, LS559 and LS560, which have closely linked transposon insertions, soc-559 (formerly csp-559) and soc-560 (formerly csp-560), respectively, regained all the developmental behaviors lost by the csgA mutation including the ability to ripple, form fruiting bodies, and sporulate. The sequence analysis of the socA locus revealed that there are three putative protein-coding regions, designated socA1, socA2, and socA3. The deduced amino acid sequence of socA1 exhibits characteristics of the short-chain alcohol dehydrogenase family. The deduced amino acid sequence of socA2 shares 48% identity with the frdD gene product of the frd operon in Proteus vulgaris which anchors fumarate reductase to the membrane. The deduced amino acid sequence of socA3 does not show homology to any known proteins. Genotypic complementation, Northern (RNA) blotting, DNA sequence analysis, and the pattern of gene expression all suggest that these three genes are polycistronic. Since the socA mutations effectively bypass CsgA, the question of why csgA is maintained in M. xanthus was examined by studying the long-term stability of socA spores. Unlike the wild type, socA mutant spores germinated on starvation agar. Transmission electron micrographs of spore thin sections revealed that germination is not due to an obvious structural deficiency of the socA spores. These results suggest that the ability of socA myxospores to survive long periods under unfavorable environmental conditions is severely comprised. Therefore, soxA appears to be essential for the development of M. xanthus.  相似文献   

6.
Zhang CY  Cai K  Liu H  Zhang Y  Pan HW  Wang B  Wu ZH  Hu W  Li YZ 《Journal of bacteriology》2007,189(21):7937-7941
The mts locus in salt-tolerant Myxococcus fulvus HW-1 was found to be critical for gliding motility, fruiting-body formation, and sporulation. The homologous genes in Myxococcus xanthus are also important for social motility and fruiting-body development. The mts genes were determined to be involved in cell-cell cohesion in both myxobacterial species.  相似文献   

7.
Sporulation in Bacillus subtilis is a complex developmental process that occurs in response to nutrient deprivation. To identify components of the mechanism that allows cells to monitor their nutritional status and to understand how this sensory information is transduced into a signal to activate specific sporulation genes, we have isolated mutants that are able to sporulate efficiently under nutritional conditions that strongly inhibit sporulation in wild-type bacteria, a phenotype we refer to as Coi (control of initiation). Four coi mutations were found to be within the coding sequence of spoOA, a gene in which null mutations prevent the initiation of sporulation and a gene whose product shares a domain of homology with phosphorylation-activated proteins that play signal transduction roles in bacteria. All four of the spoOA mutations were within this conserved domain and in close proximity to the presumptive phosphoacceptor site. The wild-type and one of the mutant SpoOA proteins were purified and shown to be competent to accept phosphoryl groups from a phosphohistidine within a bacterial signal transduction kinase (CheA). The mutant SpoOA protein exhibited enhanced phosphoacceptor activity compared with the wild-type. This property of the mutant protein, together with additional genetic information, supports a model for regulation of sporulation initiation by control of the phosphorylation level of SpoOA.  相似文献   

8.
The dsp locus contains genes involved in the subunit synthesis and/or assembly of fibrils that radiate outward from the Myxococcus xanthus cell surface and attach to other cells. The csgA gene encodes an extracellular protein morphogen which is essential for fruiting body development. The question of whether fibrils are involved in the transmission of CsgA to adjacent cells was investigated in three ways. First, the dsp and csgA mutants were mixed in a ratio of 1:1 and allowed to develop; fruiting bodies containing spores derived from the csgA mutant were formed, suggesting efficient CsgA transfer. Second, the csgA mutation affected expression of many developmentally regulated genes differently from the way dsp affected their expression. Third, the expression of one developmentally regulated gene, which was partially expressed in csgA and dsp backgrounds, was almost completely inhibited in the presence of both mutations, suggesting that its promoter is regulated independently by two distinct stimuli, one that is csgA dependent and one that is dsp dependent. Together these results argue that fibrils are not necessary for cell-to-cell transmission or perception of CsgA, and their precise function remains unknown.  相似文献   

9.
Pim-1, a putative oncogene involved in T-cell lymphomagenesis, was mapped between the pseudo-alpha globin gene Hba-4ps and the alpha-crystallin gene Crya-1 on mouse chromosome 17 and therefore within the t complex. Pim-1 restriction fragment variants were identified among t haplotypes. Analysis of restriction fragment sizes obtained with 12 endonucleases demonstrated that the Pim-1 genes in some t haplotypes were indistinguishable from the sizes for the Pim-1b allele in BALB/c inbred mice. There are now three genes, Pim-1, Crya-1 and H-2 I-E, that vary among independently derived t haplotypes and that have indistinguishable alleles in t haplotypes and inbred strains. These genes are closely linked within the distal inversion of the t complex. Because it is unlikely that these variants arose independently in t haplotypes and their wild-type homologues, we propose that an exchange of chromosomal segments, probably through double crossingover, was responsible for indistinguishable Pim-1 genes shared by certain t haplotypes and their wild-type homologues. There was, however, no apparent association between variant alleles of these three genes among t haplotypes as would be expected if a single exchange introduced these alleles into t haplotypes. If these variant alleles can be shown to be identical to the wild-type allele, then lack of association suggests that multiple exchanges have occurred during the evolution of the t complex.  相似文献   

10.
11.
Located at 135 degrees on the Bacillus subtilis genetic map are several genes suspected to be involved in cell division and sporulation. Previously isolated mutations mapping at 135 degrees include the tms-12 mutation and mutations in the B. subtilis homologs of the Escherichia coli cell division genes ftsA and ftsZ. Previously, we cloned and sequenced the B. subtilis ftsA and ftsZ genes that are present on an 11-kilobase-pair EcoRI fragment and found that the gene products and organization of these two genes are conserved between the two bacterial species. We have since found that the mutation in the temperature-sensitive filamenting tms-12 mutant maps upstream of the ftsA gene on the same 11-kilobase-pair EcoRI fragment in a gene we designated dds. Sequence analysis of the dds gene and four other open reading frames upstream of ftsA revealed no significant homology to other known genes. It was found that the dds gene is not absolutely essential for viability since the dds gene could be insertionally inactivated. The dds null mutants grew slowly, were filamentous, and exhibited a reduced level of sporulation. Additionally, these mutants were extremely temperature sensitive and were unable to form colonies at 37 degrees C. Another insertion, which resulted in the elimination of 103 C-terminal residues, resulted in a temperature-sensitive phenotype less severe than that in the dds null mutant and similar to that in the known tms-12 mutant. The tms-12 mutation was cloned and sequenced, revealing a nonsense codon that was predicted to result in an amber fragment that was about 65% of the wild-type size (elimination of 93 C-terminal residues).  相似文献   

12.
13.
Streptomyces tacrolimicus (ATCC 55098) was reported to produce the immunosuppressant tacrolimus. The wild-type strain sporulates sparsely and produces very low levels of this immunosuppressant. The lack of genetic knowledge of this strain has hampered strain improvement. In this work, we have cloned the gene encoding a γ-butyrolactone receptor protein (Gbr). The gbr gene is linked to two genes encoding two subunits of the dihydroxyacetone kinase, putatively involved in the biosynthesis of the dihydroxyacetone phosphate precursor of γ-butyrolactone but is not flanked by γ-butyrolactone synthetase genes. The Gbr protein was overexpressed in Escherichia coli and purified. Electrophoretic mobility shift assays showed that Gbr binds to a specific autoregulatory element sequence located 338 bp upstream of the gbr gene, indicating that its expression is self-regulated. The deletion mutant Δgbr showed a very early and intense sporulation in two different media. A phenotype similar to that of the wild-type strain was restored by complementation of the Δgbr mutant with a wild-type gbr allele. Duplication of the gbr gene resulted in a slower sporulation. The Δgbr mutant produced much lower amount (32%) of tacrolimus quantified by high performance liquid chromatography. This analysis, using an optimised system, allowed the resolution of tacrolimus from ascomycin and other contaminant metabolites. Our results indicate that the Gbr protein regulates negatively the sporulation and positively the production of tacrolimus.  相似文献   

14.
Early in sporulation, cells of wild-type Bacillus subtilis produce three proteases (b, c and d) with monomeric Mr values of about 65 000, 53 000 and 43 500, and a further protease, e (Mr about 30 000) at the time of coat assembly. An additional protease, f (Mr about 15 000) appears transiently in sporangia at about the time of spore release. Three strains with defective spore coats were examined for alterations in sporulation proteases. A strain carrying the gerE36 mutation produces b, c and d normally, fails to produce e and accumulates f on or in its spores. A strain carrying the spoVIC610 mutation produces normal quantities of proteases b, c and d, but has a reduced amount of proteases e and f. A strain carrying both the gerE36 and the spoVIC610 mutations accumulates neither protease e nor f. The wild-type allele of the gerE gene was cloned in the vector, phage phi 105J9. Complementation tests with the cloned gene showed that the gerE36 mutation is recessive to the wild-type allele.  相似文献   

15.
S K Kim  D Kaiser 《Cell》1990,61(1):19-26
During fruiting body development, the product of the csgA gene is necessary for cellular aggregation, for spore differentiation, and for gene expression that is initiated after 6 hr of starvation. From nascent wild-type fruiting bodies we have purified a polypeptide of 17 kd called C-factor, which, at approximately 1 to 2 nM, restores normal development to csgA mutant cells. C-factor activity is not recovered from extracts of unstarved, growing cells or csgA mutant cells. The amino acid sequence from purified C-factor demonstrates that it is the product of the csgA gene. C-factor is active over a narrow range of concentration and has properties of a morphogenetic paracrine signal.  相似文献   

16.
The Bacillus subtilis gsiA operon was induced rapidly, but transiently, as cells entered the stationary phase in nutrient broth medium. A mutation at the gsiC locus caused sporulation to be defective and expression of gsiA to be elevated and prolonged. The sporulation defect in this strain was apparently due to persistent expression of gsiA, since a gsiA null mutation restored sporulation to wild-type levels. Detailed mapping experiments revealed that the gsiC82 mutation lies within the kinA gene, which encodes the histidine protein kinase member of a two-component regulatory system. Since mutations in this gene caused a substantial blockage in expression of spoIIA, spoIIG, and spoIID genes, it seems that accumulation of a product of the gsiA operon interferes with sporulation by blocking the completion of stage II. It apparently does so by inhibiting or counteracting the activity of KinA.  相似文献   

17.
Myxococcus xanthus has a complex life cycle that includes fruiting body formation. One of the first stages in development has been called A-signalling. The asg (A-signalling) mutants have been proposed to be deficient in producing A-signal, resulting in development arresting at an early stage. In this paper, we report the identification of a new asg locus asgD. This locus appears to be involved in both environmental sensing and intercellular signalling. Expression of asgD was undetected during vegetative growth, but increased dramatically within 1 h of starvation. The AsgD protein is predicted to contain 773 amino acids and to be part of a two-component regulatory system because it has a receiver domain located at the N-terminus and a histidine protein kinase at the C-terminus. An asgD null mutant was defective in fruiting body formation and sporulation on CF medium. However, the defects of the mutant were complemented extracellularly when cells were mixed with wild-type strains or with bsgA, csgA, dsgA or esgA mutants, but were not complemented extracellularly by asgA, asgB or asgC mutants. In addition, the mutant was rescued by a subset of A-factor amino acids. Surprisingly, when the mutant was plated on stringent starvation medium rather than CF, cells were able to form fruiting bodies. Thus, it appears that AsgD is directly or indirectly involved in sensing nutritionally limiting conditions. The discovery of the asgD locus provides an important sensory transduction component of early development in M. xanthus.  相似文献   

18.
19.
A series of intercellular signals are involved in the regulation of gene expression during fruiting body formation of Myxococcus xanthus. Mutations which block cell interactions, such as csgA (formerly known as spoC), also prevent expression of certain developmentally regulated promoters. csgA+ cells containing Tn5 lac omega DK4435, a developmentally regulated promoter fused to lacZ, began synthesizing lacZ mRNA 12 to 18 h into the developmental cycle. beta-Galactosidase specific activity increased about 12 h later. Neither lacZ mRNA nor beta-galactosidase activity was detected in a developing csgA mutant containing omega DK4435. The developmental promoter and its fused lacZ reporter gene were cloned into a pBR322-derived plasmid vector containing a portion of bacteriophage Mx8. These plasmids preferentially integrated into the M. xanthus chromosome by site-specific recombination at the bacteriophage Mx8 attachment site and maintained a copy number of 1 per chromosome. The integrated plasmids were relatively stable, segregating at a frequency of 0.0007% per generation in the absence of selection. The cloned and integrated promoter behaved like the native promoter, expressing beta-galactosidase at the proper time during wild-type development and failing to express the enzyme during development of a csgA mutant. The overall level of beta-galactosidase expression in merodiploid cells containing one native promoter and one promoter fused to lacZ was about half that of cells containing a single promoter fused to lacZ. These results suggest that the timing of developmentally regulated gene expression is largely independent of the location of this gene within the chromosome. Furthermore, they show that site-specific recombination can be a useful tool for establishing assays for promoter or gene function in M. xanthus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号