共查询到20条相似文献,搜索用时 15 毫秒
1.
Tetsuo Asakura Makoto Demura Takeshi Date Naoshi Miyashita Katsuaki Ogawa Michael P. Williamson 《Biopolymers》1997,41(2):193-203
The metastable state silk I structures of Bombyx mori silk fibroin in the solid state were studied on the basis of 15N- and 13C-nmr chemical shifts of Ala, Ser, and Gly residues. The 15N cross-polarization magic angle spinning (CP/MAS) nmr spectra of the precipitated fraction after chymotrypsin hydrolysis of B. mori silk fibroin with the silk I and silk II forms were measured to determine the 15N chemical shifts of Gly, Ala, and Ser residues. For comparison, 15N CP/MAS nmr chemical shifts of Ala were measured for [15N] Ala Philosamia cynthia ricini silk fibroin with antiparallel β-sheet and α-helix forms. The 13C CP/MAS nmr chemical shifts of Ala, Ser, and Gly residues of B. mori silk fibroin with the silk I and silk II forms, as well as 13C CP/MAS nmr chemical shifts of Ala residue of P. c. ricini silk fibroin with β-sheet and α-helix forms, are used for the examination of the silk I structure. Both silk I and α-helix peaks are shifted to a lower field than silk II (β-sheet) for the Cα carbons of the Ala residues, while both Cβ carbon peaks are shifted to higher field. However, the silk I peak of the 15N nucleus of the Ala residue is shifted to lower field than the silk II peak, but the α-helix peak is shifted to high field. Thus, the difference in the structure between the silk I and α-helix is reflected in a different manner between the 13C and 15N chemical shifts. The Cα and Cβ chemical shift contour plots for Ala and Ser residues, and the Cα plot for the Gly residue, were prepared from the Protein Data Bank data obtained for 12 proteins and used for discussing the silk I structure quantitatively from the conformation-dependent chemical shifts. The plots reported by Le and Oldfield for 15N chemical shifts were also used for the purpose. All these chemical shift data support Fossey's model (Ala: ϕ = −80°, φ = 150°, Gly: ϕ = −150°, φ = 80°) and do not support Lotz and Keith's model (Ala: ϕ = −104.6°, φ = 112.2°, Gly: ϕ = 79.8°, φ = 49.7° or Ala: ϕ = −124.5°, φ = 88.2°, Gly: ϕ = −49.8°, φ = −76.1°) as the silk I structure. © 1997 John Wiley & Sons, Inc. 相似文献
2.
Bombyx mori silk fibroin fiber is a fibrous protein produced by the silkworm at room temperature and from an aqueous solution whose primary structure is highly repetitive. In this study we analyzed the structural characteristics of native peptides, derived from B. mori silk fibroin, with formic acid treatment using high-resolution solid-state 13C NMR. We establish that the Ser residue bearing a short polar side chain has the ability to stabilize the conformation formed in the model peptides due to its ability to form intermolecular hydrogen bonds involving its hydroxyl group as a donor and the carbonyl groups of other residues as acceptors. On the other hand, insertion of Tyr residue in the basic (AG)n and (AGSGAG)n sequence motifs usually exhibited disruptive effects on the preferred conformations. Moreover, the environmental effect was investigated by mixing the native Cp fraction with the model peptides, showing that there is no significant structural difference on the Ser-containing peptides, while structural transformation was observed on the peptides containing the GAAS unit. This may be attributed to the fact that the Cp fraction promotes the formation of an antiparallel beta-sheet in the Ala-Ala unit. Such periodically disrupted ordered structures in the semicrystalline region of B. mori silk fibroin may be critical not only for facilitating the conformational transformation from silk I to silk II structural form but also for having some correlation with the unique properties of the silk materials. 相似文献
3.
Bombyx mori silk fibroin molecule is known to exist in two distinct structural forms: silk I (unprocessed silk fibroin) and silk II (processed silk fibroin). Using synthetic peptides, we attempt to explore the structural role played by Ser and Tyr residues on the appearance of silk I structural form of the fibroin. Twelve selected peptides (1-12) incorporating Ser and Tyr residues in the (Ala-Gly)(n) copolypeptide, that is, the sequences mimicking the primary structure of B. mori silk fibroin molecule, have been investigated under the silk I state, employing high-resolution (13)C cross-polarization/magic-angle spinning (CP/MAS) NMR spectroscopy. To acquire the silk I structural form, all the peptides were dissolved in 9 M LiBr and then dialyzed extensively against water, as established previously for the synthetic (Ala-Gly)(15) copolypeptide and B. mori silk fibroin. The diagnostic line shape of the Ala C(beta) peaks and the conformation-dependent (13)C chemical shifts of Ala and Gly resonances are presented to analyze and characterize the structural features. The results indicate that the incorporation of one Ser and/or one Tyr residue(s) at selected position in the basic (Ala-Gly)(15) sequence tend to retain predominantly the silk I structure. Conversely, the repeat pentameric and octameric Ala-Gly-Ser-Gly-Ala-Gly sequences, for example, (Ala-Gly-Ser-Gly-Ala-Gly)(5) or (Ala-Gly-Ser-Gly-Ala-Gly)(8), preferred predominantly the silk II form. The peptide sequences incorporating Ser and Tyr residue(s) into repeat Ala-Gly-Ser-Gly-Ala-Gly sequences, however, adopted the silk II structure with certain content structural heterogeneity or randomness, more pronounced for specific peptides studied. Interestingly, the crystalline Cp fraction of B. mori silk fibroin, when mixed with (Ala-Gly-Ser-Gly-Ala-Gly)(5) sequence in a 5:1 molar ratio, dissolved in 9 M LiBr, and dialyzed against distilled water, favor the silk I form. The finding tends to suggest that the less stable silk I form in (Ala-Gly-Ser-Gly-Ala-Gly)(n) sequences is likely to be induced and facilitated via intermolecular interactions with the Cp fraction, which predominantly prefers the silk I form under similar conditions; however, the hydrogen-bond formation involving O(gamma)H groups of the Ser residues may have some implications. 相似文献
4.
This study focuses on the conformational characterization of poly(alanine-glycine) II (pAG II) as a model for a Bombyx mori fibroin silk I structure. Raman, IR, and 13C-cross-polarization/magic angle spinning NMR spectra of pAG II are discussed in comparison with those of the crystalline fraction of B. mori silk fibroin (chymotryptic precipitate, Cp) with a silk I (silk I-Cp) structure. The spectral data give evidence that silk I-Cp and the synthetic copolypeptide pAG II have similar conformations. Moreover, the spectral findings reveal that silk I-Cp is more crystalline than pAG II; consequently, the latter contains a larger amount of the random coil conformation. Differential scanning calorimetry measurements confirm this result. N-Deuteration experiments on pAG II allow us to attribute the Raman component at 1320 cm(-1) to the amide III mode of a beta-turn type II conformation, thus confirming the results of those who propose a repeated beta-turn type II structure for silk I. The analysis of the Raman spectra in the nuNH region confirms that the silk I structure is characterized by the presence of different types of H-bonding arrangements, in agreement with the above model. 相似文献
5.
Asakura T Nakazawa Y Ohnishi E Moro F 《Protein science : a publication of the Protein Society》2005,14(10):2654-2657
13C high-resolution solid-state NMR coupled with selective 13C isotope-labeling of different Ala one methyl carbons was used to clarify the structure of (AG)15 peptide in the silk II structure as a model for the crystalline domain of Bombyx mori silk fiber. At the inner part of the peptide, the fraction of the peak at 16.6 ppm of the Ala Cbeta resonance assigned to beta-turn structure increased at 11th and 19th positions. These data indicate the appearance of the most probable lamellar structure having a turn structure at these two positions, although the position of turn was distributed along the chain. 相似文献
6.
It is important to resolve the structure of Bombyx mori silk fibroin before spinning (silk I) and after spinning (silk II), and the mechanism of the structural transition during fiber formation in developing new silk-like fiber. The silk I structure has been recently resolved by (13)C solid-state NMR as a "repeated beta-turn type II structure." Here, we used (13)C solid-state NMR to clarify the heterogeneous structure of the natural fiber from Bombyx mori silk fibroin in the silk II form. Interestingly, the (13)C CP/MAS NMR revealed a broad and asymmetric peak for the Ala Cbeta carbon. The relative proportions of the various heterogeneous components were determined from their relative peak intensities after line shape deconvolution. Namely, for 56% crystalline fraction (mainly repeated Ala-Gly-Ser-Gly-Ala-Gly sequences), 18% distorted beta-turn, 13% beta-sheet (parallel Ala residues), and 25% beta-sheet (alternating Ala residues). The remaining fraction of 44% amorphous Tyr-rich region, 22% in both distorted beta-turn and distorted beta-sheet. Such a heterogeneous structure including distorted beta-turn can be observed for the peptides (AG)(n) (n > 9 ). The structural change from silk I to silk II occurs exclusively for the sequence (Ala-Gly-Ser-Gly-Ala-Gly)(n) in B. mori silk fibroin. The generation of the heterogeneous structure can be studied by change in the Ala Cbeta peak of (13)C CP/MAS NMR spectra of the silk fibroin samples with different stretching ratios. 相似文献
7.
8.
For a deeper insight into the structure of Bombyx mori silk fibroin, some model peptides containing tyrosine (Y), valine (V), and serine (S) in the basic (AG)n sequence were synthesized by the solid-phase method and analyzed by Raman spectroscopy in order to clarify their conformation and to evaluate the formation and/or disruption of the ordered structure typical of B. mori silk fibroin upon incorporation of Y, V, and S residues into the basic (AG)n sequence. The Raman results indicated that the silk I structure remains stable only when the Y residue is positioned near the chain terminus; otherwise, a silk I --> silk II conformational transition occurs. The peptides AGVGAGYGAGVGAGYGAGVGAGYG(AG)3 and (AG)3YG(AG)2VGYG(AG)3YG(AG)3 treated with LiBr revealed a prevalent silk II conformation; moreover, the former contained a higher amount of random coil than the latter. This result was explained in relation to the different degrees of interruption of the (AG)n sequence. The Raman analysis of the AGSGAG-containing samples confirmed that the AGSGAG hexapeptide is a good model for the silk II crystalline domain. As the number of AGSGAG repeating units decreased, the random coil content increased. The study of the Y domain (I850/I830 intensity ratio) allowed us to hypothesize that in the packing characteristic of Silk I and Silk II conformations the Y residues experience different environments and hydrogen-bonding arrangements; the packing typical of silk I structure traps the tyrosyl side chains in environments more unfavorable to phenoxyl hydrogen-bonding interactions. 相似文献
9.
The structure of a crystalline form of Bombyx mori silk fibroin, commonly found before the spinning process (known as silk I), has been proposed as a repeated beta-turn type II-like structure by combining data obtained from solid-state two dimensional spin-diffusion nuclear magnetic resonance and rotational-echo double-resonance (T. Asakura et al., J Mol Biol, in press). In this paper, the WAXS pattern of alanine-glycine alternating copolypeptide, (Ala-Gly)(15) with silk I form which was used for a silk I model of B. mori silk fibroin was observed. The pattern calculated with the silk I model proposed by us is well reproduced the observed one, indicating the validity of the proposed silk I model. In addition, two peptides of the other repeated sequences which contain Tyr or Val residues in the silk fibroin,23 were synthesized; (Ala-Gly-Tyr-Gly-Ala-Gly)(5) and (X-Gly)(15) where X is Tyr for the 7th, 15th and 23th residues, and Val for the 11th residue and Ala for other residues. There are no sharp peaks in the WAXS patterns, and therefore both samples are in the non-crystalline state. This is in agreement with the (13)C CP/MAS NMR result, where the conformation is mainly random coil. 相似文献
10.
Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. 总被引:4,自引:0,他引:4
G Freddi G Pessina M Tsukada 《International journal of biological macromolecules》1999,24(2-3):251-263
Bombyx mori silk fibers were dissolved in N-methyl morpholine N-oxide (MMNO), an organic cyclic amine oxide used for the solvent spinning of regenerated cellulosic fibers. The commercial MMNO monohydrate used in this study as a solvent for silk is a hygroscopic compound crystalline at room temperature, which becomes an active solvent after melting at 76 degrees C. The degree of hydration of MMNO was checked by DSC measurements. The solvation power of MMNO towards silk fibroin drastically decreased at a water content > or = 20-21% w/w. Dissolution of silk required both thermal and mechanical energy. The optimum temperature was 100 degrees C. At lower temperatures dissolution proceeded very slowly. At higher temperatures, rapid depolymerization of silk fibroin occurred. The value of the Flory-Huggins interaction parameter chi for the MMNO-H2O-silk fibroin system was -8.5, suggesting that dissolution is a thermodynamically favored process. The extent of degradation of silk fibroin was assessed by measuring the intrinsic viscosity and determining the amino acid composition of silk after regeneration with an aqueous methanol solution, which was effective in removing the solvent and coagulating silk. Regenerated silk fibroin membranes were characterized by infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. The prevailing molecular conformation of silk fibroin chains was the beta-sheet structure, as shown by the intense amide I-III bands at 1704, 1627, 1515, 1260, and 1230 cm(-1). The value of the I1260/I1230 intensity ratio (crystallinity index) was 0.68, comparable to that of the fibers. The DSC thermogram was characteristic of a silk fibroin material with unoriented beta-sheet crystalline structure, with an intense decomposition endotherm at 294 degrees C. The SEM examination of fractured surfaces showed the presence of a dense microstructure with a very fine texture formed by densely packed roundish particles of about 100-200 nm diameter. 相似文献
11.
As an important direct solvent for cellulose, N-methyl morpholine N-oxide (NMMO) is environmentally friendly, and potentially very economical. Silk fibroin (SF) (Bombyx mori) can also be dissolved directly in NMMO.H2O. However, it is unexpectedly difficult to obtain a silk fibroin solution with a concentration higher than 10wt.% in this way, and extensive degradation of silk fibroin occurs if the dissolution temperature is higher than 110 degrees C. On the other hand, it is found that regenerated silk fibroin (RSF) film is much easier to dissolve in NMMO.H2O than ordinary SF. The RSF in NMMO.H2O can be easily concentrated to a range from 10 to 25wt.%. The structural differences between the degummed silk fiber and the RSF film lead to this different solubility in NMMO.H2O. The rheological behavior of concentrated RSF/NMMO.H2O solutions were also investigated. Regenerated silk fiber was spun from this type of solution, and its strength can reach up to 3.07 cN/dtex. 相似文献
12.
The role of irregular unit,GAAS, on the secondary structure of Bombyx mori silk fibroin studied with 13C CP/MAS NMR and wide-angle X-ray scattering 下载免费PDF全文
Asakura T Sugino R Okumura T Nakazawa Y 《Protein science : a publication of the Protein Society》2002,11(8):1873-1877
Bombyx mori silk fibroin is a fibrous protein whose fiber is extremely strong and tough, although it is produced by the silkworm at room temperature and from an aqueous solution. The primary structure is mainly Ala-Gly alternative copolypeptide, but Gly-Ala-Ala-Ser units appear frequently and periodically. Thus, this study aims at elucidating the role of such Gly-Ala-Ala-Ser units on the secondary structure. The sequential model peptides containing Gly-Ala-Ala-Ser units selected from the primary structure of B. mori silk fibroin were synthesized, and their secondary structure was studied with (13)C CP/MAS NMR and wide-angle X-ray scattering. The (13)C isotope labeling of the peptides and the (13)C conformation-dependent chemical shifts were used for the purpose. The Ala-Ala units take antiparallel beta-sheet structure locally, and the introduction of one Ala-Ala unit in (Ala-Gly)(15) chain promotes dramatical structural changes from silk I (repeated beta-turn type II structure) to silk II (antiparallel beta-sheet structure). Thus, the presence of Ala-Ala units in B. mori silk fibroin chain will be one of the inducing factors of the structural transition for silk fiber formation. The role of Tyr residue in the peptide chain was also studied and clarified to induce "locally nonordered structure." 相似文献
13.
J Schaefer J R Garbow G S Jacob T M Forrest G E Wilson 《Biochemical and biophysical research communications》1986,137(2):736-741
Lyophilized whole cells of Aerococcus viridans (Gaffkya homari) grown on a synthetic medium containing D-[2-13C, 15N]Ala, or containing both L-[1-13C]Lys and D-[15N]Ala, have been examined by double cross-polarization magic-angle spinning 13C and 15N nuclear magnetic resonance. Results from the double-labeled alanine experiment confirm the absence of metabolic scrambling of alanine by A. viridans. Results from the combined single-label experiment can be used to count directly the number of adjacent L-Lys and D-Ala units in peptide chains of cell-wall peptidoglycan. This count leads to the conclusion that there are no terminal D-Ala or D-Ala-D-Ala units in uncross-linked chains of the peptidoglycan of A. viridans. 相似文献
14.
Tsunenori Kameda Yasushi Tamada 《International journal of biological macromolecules》2009,44(1):64-69
To elucidate the native-state crystal structure of beeswax from the Japanese bee, Apis cerana japonica, we determined the relationship between temperature and the 13C solid-state nuclear magnetic resonance (NMR) chemical shift of methylene carbon of beeswax, with comparison to n-alkanes and polyethylene in the orthorhombic, monoclinic, or triclinic crystal form. Variable-temperature 13C solid-state NMR observations of n-alkanes and polyethylene revealed that the chemical shifts of methylene carbon in the orthorhombic crystal form increased linearly with increasing temperature, that of the triclinic form decreased, and that of the monoclinic form was unaltered. These relations were compared with results of variable-temperature 13C solid-state NMR observation of beeswax. Results clarified that the two crystal forms comprising the beeswax in the native state are orthorhombic and monoclinic. The variable-temperature 13C solid-state NMR observations were also applied to interpret the differential scanning calorimetry (DSC) curve of beeswax. They were used to clarify the structural changes of beeswax for widely various temperatures. For beeswax secreted by the Japanese bee, the transition from the orthorhombic form to the rotator phase occurred at 36 °C, that is from the crystalline to the intermediate state at 45 °C. Moreover, the variable-temperature 13C solid-state NMR spectrum of honeybee silk in the native state was observed. Results demonstrated that the secondary structures of honeybee silk proteins in the native state comprised coexisting α-helix and β-sheet conformations and that the amount of α-helices was greater. The α-helix content of honeybee silk was compared with that of hornet silk produced by Vespa larvae. 相似文献
15.
Employing high-resolution (13)C solution NMR and circular dichroism (CD) spectroscopic techniques, the distinctive influence of two intimately related hexafluoro solvents, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and hexafluoroacetone trihydrate (HFA), on the structural characteristics of Bombyx mori (B. mori) silk fibroin, the chymotrypsin precipitate (C(p)) fraction, and two synthetic peptides, (AGSGAG)(5) and (AG)(15), is described. The observed (13)C solution NMR and CD spectra of these polypeptides in HFIP and HFA revealed a distinctive influence on their conformational characteristics. The (13)C NMR spectra, as analyzed from the unique chemical shifts of C(alpha) and C(beta) resonances of constituent residues revealed that fibroin largely assumes helical conformation(s) in both solvents. However, the peak shifts were greater for the samples in HFIP, indicating that the types of helical structure(s) may be different from the one populated in HFA. Similar structural tendencies of these polypeptides were reflected in CD spectra. The observed CD patterns, i.e., a strong positive band at approximately 190 nm and negative bands at approximately 206 and 222 nm, have been attributed to the preponderance of helical structures. Of the two prevalent helical structures, alpha-helix and 3(10)-helix, the evidence emerged for the fibroin protein in favor of 3(10)-helical structure stabilization in HFIP and its significant disruption in HFA, as deduced from the characteristic R1 (=[theta](190)/[theta](202)) and R2 (=[theta](222)/[theta](206)) ratios, determined from the CD data. Conversely, the native polypeptides and synthetic peptide fragments derived from highly crystalline regions of the silk fibroin protein sustained predominantly an unordered structure in HFA solvent. 相似文献
16.
Inés Castrillo Jorge Alegre-Cebollada Álvaro Martínez del Pozo José G. Gavilanes Jorge Santoro Marta Bruix 《Biomolecular NMR assignments》2009,3(1):5-7
Sticholysin I is an actinoporin, a pore forming toxin, of 176 aminoacids produced by the sea anemone Stichodactyla heliantus. Isotopically labelled 13C/15N recombinant protein was produced in E. coli. Here we report the complete NMR 15N, 13C and 1H chemical shifts assignments of Stn I at pH 4.0 and 25°C (BMRB No. 15927). 相似文献
17.
18.
Spider silk is one of nature's most remarkable biomaterials due to extraordinary strength and toughness not found in today's synthetic materials. Of the seven types of silk, wrapping silk (AcSp1) is the most extensible of the types of silks and has no sequence similarity to the other types. Here we report the chemical shifts for the AcSp1 199 amino acid protein repeat unit and its anticipated secondary structure based on secondary chemical shifts. 相似文献
19.
The structure and structural transition of the glycine residue adjacent to the N-terminal alanine residue of the poly(L-alanine), (Ala)(12-13), region in Samia cynthia ricini silk fibroin was studied using (13)C nuclear magnetic resonance (NMR). Most of the glycine carbonyl peaks in the (13)C solution NMR spectrum of [1-(13)C]glycine-silk fibroin could be assigned to the primary structure from the comparison of the (13)C chemical shifts of seven glycine-containing tripeptides. The slow exchange between helix and coil forms in the NMR time scale was observed with increasing temperature exclusively for the underlined glycine residue in the Gly-Gly-(Ala)(12-13) sequence during fast helix-coil transition of the (Ala)(12-13) region. 相似文献
20.
The DNA sequence orgainzation of the protein encoding region of the gene for silk fibroin has been analyzed. The accompanying paper (Manningm R. F., and Gage, L. P. (1980) J. Biol. Chem. 255, 9451-9457) shows that the total length of the gene, and its protein, as well as the pattern of restriction sites in the gene is highly polymorphic among inbred stocks of Bombyx mori, In this paper, those features of fibroin gene structure which are invariant among these alleles are presented. Fibroin is composed primarily of relatively short "crystalline" and "amorphous" peptides of known sequence whose arrangement in the protein is unknown. Knowledge of the codons most commonly used in fibroin mRNA allowed utilization of particular restriction inzymes as a means for determing the nature and organization of crystalline and amorphous coding sequences in the fibroin gene. Three restriction endonucleases were identified that cleve sequences coding for amorphous region peptides. Their cleavage pattern revelaed that the repetitive coding sequence of the gene core (approximately 15 kilobases) is divided into at least 10 large crystalline coding domains interrupted by smaller amorphous coding domains. Many restriction endoncleases do not cleave the fibroin core at all, three of them with four gase recognition sequences. Specific deductions as to codon usage and repetitive sequence homogeneity in the gene follow from these results. One novel finding is the rigorous exclusion of the glycine codon GGA prior to serine codons even though this glycine codon is used frequently prior to alanine codons. The sequence homogeneity and the regularly alternating arrangement of crystalline and amorphous coding sequences of the gene are discussed in terms of the function of fibroin protein and the evolution of highly repetitive DNA. 相似文献