首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
Thermodynamics of internal C.T mismatches in DNA.   总被引:12,自引:9,他引:3       下载免费PDF全文
Thermodynamics of 23 oligonucleotides with internal single C.T mismatches were obtained by measuring UV absorbance as a function of temperature. Results from these 23 duplexes were combined with three measurements from the literature to derive nearest-neighbor thermodynamic parameters for seven linearly independent trimer sequences with internal C.T mismatches. The data show that the nearest-neighbor model is adequate for predicting thermodynamics of oligonucleotides with internal C.T with average deviations for Delta G degrees37, Delta H degrees, Delta S degrees and T m of 6.4%, 9.9%, 10.6%, and 1.9 degreesC respectively. C.T mismatches destabilize the duplex in all sequence contexts. The thermodynamic contribution of C. T mismatches to duplex stability varies weakly depending on the orientation of the mismatch and its context and ranges from +1.02 kcal/mol for GCG/CTC and CCG/GTC to +1.95 kcal/mol for TCC/ATG.  相似文献   

2.
Thermodynamic parameters of helix formation were measured spectroscopically for seven hexaribonucleotides containing a GC tetramer core and G.U or other terminal mismatches. The free energies of helix formation are compared with those for the tetramer core alone and with those for the hexamer with six Watson-Crick base pairs. In 1 M NaCl, at 37 degrees C, the free energy of a terminal G.U mismatch is about equal to that of the corresponding A.U pair. Although other terminal mismatches studied add between -1.0 and -1.6 kcal/mol to delta G0 37 for helix formation, all are less stable than the corresponding Watson-Crick pairs. Comparisons of the stability increments for terminal G.U mismatches and G.C pairs suggest when stacking is weak the additional hydrogen bond in the G.C pair adds roughly -1 kcal/mol to the favorable free energy of duplex formation.  相似文献   

3.
The three-dimensional solution structure of the self-complementary DNA dodecamer (CGT_GACGT_TACG above GCAT_TGCAG_TGC] which contains the thermodynamically destabilizing [TG_A above AT_T] motif was determined using two-dimensional NMR spectroscopy and simulated annealing protocols. Relaxation matrix analysis methods were used to yield accurate NOE derived distance restraints. Scalar coupling constants for the sugar protons were determined by quantitative simulations of DQF-COSY cross-peaks and used to determine sugar pucker populations. Twenty refined structures starting from random geometries converged to an average pairwise root mean square deviation of 0.49 A. Back calculated NOEs give Rc and Rx factors of 0.38 and 0.088, respectively. The final structure shows that each of the single G@T mismatches form a wobble pair with two hydrogen bonds where the guanine projects into the minor groove and the thymine projects into the major groove. The incorporation of the destabilizing [TG_A above AT_T] motif has little effect on the backbone torsion angles and helical parameters compared to standard B-form duplexes, which may explain why G.T mismatches are among the most commonly observed in DNA. The structure shows that perturbations caused by a G.T mismatch extend only to its neighboring Watson-Crick base pair, thus providing a structural basis for the applicability of the nearest-neighbor model to the thermodynamics of internal G.T mismatches.  相似文献   

4.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

5.
Temperature-gradient gel electrophoresis (TGGE) was employed to determine the thermal stabilities of 48 DNA fragments that differ by single base pair mismatches. The approach provides a rapid way for studying how specific base mismatches effect the stability of a long DNA fragment. Homologous 373 bp DNA fragments differing by single base pair substitutions in their first melting domain were employed. Heteroduplexes were formed by melting and reannealing pairs of DNAs, one of which was 32P-labeled on its 5'-end. Product DNAs were separated based on their thermal stability by parallel and perpendicular temperature-gradient gel electrophoresis. The order of stability was determined for all common base pairs and mismatched bases in four different nearest neighbor environments; d(GXT).d(AYC), d(GXG).d(CYC), d(CXA).d(TYG), and d(TXT).d(AYA) with X,Y = A, T, C, or G. DNA fragments containing a single mismatch were destabilized by 1 to 5 degrees C with respect to homologous DNAs with complete Watson-Crick base pairing. Both the bases at the mismatch site and neighboring stacking interactions influence the destabilization caused by a mismatch. G.T, G.G and G.A mismatches were always among the most stable mismatches for all nearest neighbor environments examined. Purine.purine mismatches were generally more stable than pyrimidine.pyrimidine mispairs. Our results are in very good agreement with data where available from solution studies of short DNA oligomers.  相似文献   

6.
Vecenie CJ  Morrow CV  Zyra A  Serra MJ 《Biochemistry》2006,45(5):1400-1407
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequence of the types GCGXUAAUYCGC and GGUXUAAUYACC with Watson-Crick loop closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.1 to 5.1 kcal/mol. These results agree with the model previously developed [Vecenie, C. J., and Serra, M. J. (2004) Biochemistry 43, 11813] to predict the stability of RNA hairpin loops: DeltaG degrees (37L(n) = DeltaG degrees (37i(n) + DeltaG degrees (37MM) - 0.8 (if first mismatch is GA or UU) - 0.8 (if first mismatch is GG and loop is closed on the 5' side by a purine). Here, DeltaG degrees (37i(n) is the free energy for initiating a loop of n nucleotides, and DeltaG degrees (37MM) is the free energy for the interaction of the first mismatch with the closing base pair. Thermodynamic parameters are also reported for hairpin formation in 1 M NaCl by RNA sequence of the types GACGXUAAUYUGUC and GGUXUAAUYGCC with GU base pair closure, where XY is the set of 10 possible mismatch base pairs. A nearest-neighbor analysis of the data indicates the free energy of loop formation at 37 degrees C varies from 3.6 to 5.3 kcal/mol. These results allow the development of a model for predicting the stability of hairpin loops closed by GU base pairs. DeltaG degrees (37L(n) (kcal/mol) = DeltaG degrees (37i(n) - 0.8 (if the first mismatch is GA) - 0.8 (if the first mismatch is GG and the loop is closed on the 5' side by a purine). Note that for these hairpins, the stability of the loops does not depend on DeltaG degrees (37MM). For hairpin loops closed by GU base pairs, the DeltaG degrees (37i(n) values, when n = 4, 5, 6, 7, and 8, are 4.9, 5.0, 4.6, 5.0, and 4.8 kcal/mol, respectively. The model gives good agreement when tested against six naturally occurring hairpin sequences. Thermodynamic values for terminal mismatches adjacent to GC, GU, and UG base pairs are also reported.  相似文献   

7.
Davis AR  Znosko BM 《Biochemistry》2007,46(46):13425-13436
Many naturally occurring RNA structures contain single mismatches. However, the algorithms currently used to predict RNA structure from sequence rely on a minimal set of data for single mismatches, most of which occur rather infrequently in nature. As a result, several approximations and assumptions are used to predict the stability of RNA duplexes containing the most common single mismatches. Therefore, the relative frequency of single mismatches was determined by compiling and searching a database of 955 RNA secondary structures. Thermodynamic parameters for duplex formation, derived from optical melting experiments, are reported for 28 oligoribonucleotides containing frequently occurring single mismatches. These data were then combined with previous data to construct a dataset of 64 single mismatches, including the 30 most common in the database. Because of this increase in experimental thermodynamic parameters for single mismatches that occur frequently in nature, more accurate free energy calculations have resulted. To improve the prediction of the thermodynamic parameters for duplexes containing single mismatches that have not been experimentally measured, single mismatch-specific nearest neighbor parameters were derived. The free energy of an RNA duplex containing a single mismatch that has not been thermodynamically characterized can be calculated by: DeltaG degrees 37,single mismatch = DeltaG degrees 37,mismatch nt + DeltaG degrees 37,mismatch-NN interaction + DeltaG degrees 37,AU/GU. Here, DeltaG degrees 37,mismatch is -0.4, -2.1, and -0.3 kcal/mol for A.G, G.G, and U.U mismatches, respectively; DeltaG degrees 37,mismatch-NN interaction is 0.7, -0.5, 0.4, -0.4, and -1.0 kcal/mol for 5'YRR3'/3'RRY5', 5'RYY3'/3'YYR5', 5'YYR3'/3'RYY5', 5'YRY3'/3'RYR5', and 5'RRY3'/3'YYR5' mismatch-nearest neighbor combinations, respectively, when A and G are categorized as purines (R) and C and U are categorized as pyrimidines (Y); and DeltaG degrees 37,AU/GU is a penalty of 1.2 kcal/mol for replacing a G-C base pair with either an A-U or G-U base pair. Similar predictive models were also derived for DeltaH degrees single mismatch and DeltaS degrees single mismatch. These new predictive models, in conjunction with the reported thermodynamics for frequently occurring single mismatches, should allow for more accurate calculations of the free energy of RNA duplexes containing single mismatches and, furthermore, allow for improved prediction of secondary structure from sequence.  相似文献   

8.
F Aboul-ela  D Koh  I Tinoco  Jr    F H Martin 《Nucleic acids research》1985,13(13):4811-4824
Thermodynamic parameters for double strand formation have been measured for the sixteen double helices of the sequence dCA3XA3G.dCT3YT3G, with each of the bases A, C, G and T at the positions labelled X and Y. The results are analyzed in terms of nearest-neighbors and are compared with thermodynamic parameters for RNA secondary structure. At room temperature the sequence (Formula: see text) is more stable than (Formula: see text) and is similar in stability to (Formula: see text) and (Formula: see text) are least stable. At higher temperatures the sequences containing a G.C base pair become more stable than those containing only A.T. All molecules containing mismatches are destabilized with respect to those with only Watson-Crick pairing, but there is a wide range of destabilization. At room temperature the most stable mismatches are those containing guanine (G.T, G.G, G.A); the least stable contain cytosine (C.A, C.C). At higher temperatures pyrimidine-pyrimidine mismatches become the least stable.  相似文献   

9.
10.
The stability and structure of RNA duplexes with consecutive A.C, C.A, C.C, G.G, U.C, C.U, and U.U mismatches were studied by UV melting, CD, and NMR. The results are compared to previous results for GA and AA internal loops [SantaLucia, J., Kierzek, R., & Turner, D. H. (1990) Biochemistry 29, 8813-8819; Peritz, A., Kierzek, R., & Turner, D.H. (1991) Biochemistry 30, 6428-6436)]. The observed order for stability increments of internal loop formation at pH 7 is AG = GA approximately UU greater than GG greater than or equal to CA greater than or equal to AA = CU = UC greater than or equal to CC greater than or equal to AC. The results suggest two classes for internal loops with consecutive mismatches: (1) loops that stabilize duplexes and have strong hydrogen bonding and (2) loops that destabilize duplexes and may not have strong hydrogen bonding. Surprisingly, rCGCUUGCG forms a very stable duplex at pH 7 in 1 M NaCl with a TM of 44.8 degrees C at 1 x 10(-4) M and a delta G degrees 37 of -7.2 kcal/mol. NOE studies of the imino protons indicate hydrogen bonding within the U.U mismatches in a wobble-type structure. Resonances corresponding to the hydrogen-bonded uridines are located at 11.3 and 10.4 ppm. At neutral pH, rCGCCCGCG is one of the least stable duplexes with a TM of 33.2 degrees C and delta G degrees 37 of -5.1 kcal/mol. Upon lowering the pH to 5.5, however, the TM increases by 12 degrees C, and delta G degrees 37 becomes more favorable by 2.5 kcal/mol. The pH dependence of rCGCCCGCG may be due to protonation of the internal loop C's, since no changes in thermodynamic parameters are observed for rCGCUUGCG between pH 7 and 5.5. Furthermore, two broad imino proton resonances are observed at 10.85 and 10.05 ppm for rCGCCCGCG at pH 5.3, but not at pH 6.5. This is also consistent with C.C+ base pairs forming at pH 5.5. rCGCCAGCG and rGGCACGCC have a small pH dependence, with TM increases of 5 and 3 degrees C, respectively, upon lowering the pH from 7 to 5.5. rCGCCUGCG and rCGCUCGCG also show little pH dependence, with TM increases of 0.8 and 1.4 degrees C, respectively, upon lowering the pH to 5.5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Thermodynamic parameters are presented for 12 different RNA duplexes containing A.A, A.G, G.A and G.G mismatches flanked by C-G base pairs. UV melting studies were conducted under three different buffer conditions in order to evaluate the effects of salt concentration and pH on the stability of each mismatch-containing duplex. The main findings are: (i) the mismatches have a wide range of effects on duplex stability, decreasing delta G degrees 37 of denaturation by approximately 0-7 kcal/mol; (ii) the nearest-neighbor assumption commonly used to calculate helix stability breaks down for G.A mismatches; and (iii) G.A mismatches separated by 2 bp form a protonated structure.  相似文献   

12.
Sugimoto N  Nakano M  Nakano S 《Biochemistry》2000,39(37):11270-11281
Thermodynamics of 66 RNA/DNA duplexes containing single mismatches were measured by UV melting methods. Stability enhancements for rG. dT mismatches were the largest of all mismatches examined here, while rU.dG mismatches were not as stable. The methyl group on C5 of thymine enhanced the stability by 0.12 approximately 0.53 kcal mol(-)(1) depending on the identity of adjacent Watson-Crick base pairs, whereas the 2'-hydroxyl group in ribouridine stabilized the duplex by approximately 0.6 kcal mol(-)(1) regardless of the adjacent base pairs. Stabilities induced by the methyl group in thymine, the 2'-hydroxyl group of ribouridine, and an nucleotide exchange at rG.dT and rU.dG mismatches were found to be independent of each other. The order for the mismatch stabilities is rG.dT > rU. dG approximately rG.dG > rA.dG approximately rG.dA approximately rA. dC > rA.dA approximately rU.dT approximately rU.dC > rC.dA approximately rC.dT, although the identity of the adjacent base pairs slightly altered the order. The pH dependence stability and structural changes were suggested for the rA.dG but not for rG.dA mismatches. Comparisons of trinucleotide stabilities for G.T and G.U pairs in RNA, DNA, and RNA/DNA duplexes indicate that stable RNA/DNA mismatches exhibit a stability similar to RNA mismatches while unstable RNA/DNA mismatches show a stability similar to that of DNA mismatches. These results would be useful for the design of antisense oligonucleotides.  相似文献   

13.
Improved free energies for G.C base-pairs   总被引:2,自引:0,他引:2  
Thermodynamic parameters of helix formation are reported for seven oligoribonucleotides containing only G.C pairs. These data are used with the nearest-neighbor model to calculate enthalpies and free energies of base-pair formation for G.C pairs. For helix initiation, the free energy change at 37 degrees C, delta G(0)37, is +3.9 kcal/mol; for helix propagation, the delta G(0)37 values are -2.3, -3.2 and -3.3 kcal/mol for C-G, G-G and G-C neighbors, respectively.  相似文献   

14.
Thermodynamics of DNA duplexes with adjacent G.A mismatches.   总被引:11,自引:0,他引:11  
Y Li  G Zon  W D Wilson 《Biochemistry》1991,30(30):7566-7572
The sequence 5'-d(ATGAGCGAAT) forms a very stable self-complementary duplex with four G.A mismatch base pairs (underlined) out of ten total base pairs [Li et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 26-30]. The conformation is in the general B-family and is stabilized by base-pair hydrogen bonding of an unusual type, by favorable base dipole orientations, and by extensive purine-purine stacking at the mismatched sites. We have synthesized 13 decamers with systematic variations in the sequence above to determine how the flanking sequences, the number of G.A mismatches, and the mismatch sequence order (5'-GA-3' or 5'-AG-3') affect the duplex stability. Changing A.T to G.C base pairs in sequences flanking the mismatches stabilizes the duplexes, but only to the extent observed with B-form DNA. The sequence 5'-pyrimidine-GA-purine-3', however, is considerably more stable than 5'-purine-GA-pyrimidine-3'. The most stable sequences with two pairs of adjacent G.A mismatches have thermodynamic parameters for duplex formation that are comparable to those for fully Watson-Crick base-paired duplexes. Similar sequences with single G.A pairs are much less stable than sequences with adjacent G.A mismatches. Reversing the mismatch order from 5'-GA-3' to 5'-AG-3' results in an oligomer that does not form a duplex. These results agree with predictions from the model derived from NMR and molecular mechanics and indicate that the sequence 5'-pyrimidine-GA-purine-3' forms a stable conformational unit that fits quite well into a B-form double helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Barnes TW  Turner DH 《Biochemistry》2001,40(42):12738-12745
UV melting experiments show that C5-(1-propynyl)ation of seven pyrimidines to give a fully propynylated oligodeoxynucleotide (PrODN) heptamer increases the thermodynamic stability of six Watson-Crick paired DNA:RNA duplexes by 8.2 kcal/mol, on average, at 37 degrees C. About 2.5 kcal/mol of this enhancement is due to long-range cooperativity between the propynylated pyrimidines, Y(p)'s. On average, penalties for dU(p):rG, dC(p):rA, dU(p):rC, and dC(p):rC mismatches are enhanced by 2.9 kcal/mol in PrODN:RNA duplexes over those in unmodified duplexes. This results in penalties as large as 10 kcal/mol for a single mismatch. Removing a single propyne two base pairs away from a mismatch in a PrODN:RNA duplex eliminates the enhancement in specificity. Evidently, enhanced specificity is directly linked to long-range cooperativity between Y(p)'s. In most cases, the enhanced specificity is larger for internal than for terminal mismatches. PrODN:RNA duplexes are destabilized by full phosphorothioate backbone substitution to give S-PrODN:RNA duplexes. The S-PrODN:RNA duplexes retain enhanced mismatch penalties, however. These results provide insight for utilizing long-range cooperativity and enhanced specificity to improve nucleic acid based probe and drug design.  相似文献   

16.
G:T mispairs in DNA originate spontaneously via deamination of 5-methylcytosine. Such mispairs are restored to normal G:C pairs by both E. coli K strains and human cells. In this study we have analyzed the repair by human cell extracts of G:T mismatches in various DNA contexts. We performed two sets of experiments. In the first, repair was sequence specific in that G:T mispairs at CpG sites at four different CpG sites were repaired, but a G:T mismatch at a GpG site was not. Cytosine hemimethylation did not block repair of a substrate containing a CpG/GpT mismatch. In the second set of experiments, substrates with a G:T mismatch at a fixed position were constructed with an A, T, G, or C 5' to the mismatched G, and alterations in the complementary strand to allow otherwise perfect Watson-Crick pairing. All were incised just 5' to the mismatched T and competed for repair incision with a G:T substrate in which a C was 5' to the mismatched G. Thus human G:T mismatch activity shows sequence specificity, incising G:T mismatched pairs at some DNA sites, but not at others. At an incisable site, however, incision is little influenced by the base 5' to the mismatched G.  相似文献   

17.
Optical melting transitions of the short DNA hairpins formed from the self-complementary DNA oligomers d[GGATACX4GTATCC] where X = A, T, G, or C measured in 100 mM NaCl are presented. A significant dependence of the melting transitions on loop sequence is observed and transition temperatures, tm, of the hairpins vary from 58.3 degrees C for the T4 loop hairpin to 55.3 degrees C for the A4 loop. A nearest-neighbor sequence-dependent theoretical algorithm for calculating melting curves of DNA hairpins is presented and employed to analyze the experimental melting transitions. Experimental melting curves were fit by adjustment of a single theoretical parameter, Fend(n), the weighting function for a hairpin loop comprised of n single-strand bases. Empirically determined values of Fend(n) provide an evaluation of the free-energy of hairpin loop formation and stability. Effects of heterogeneous nearest-neighbor sequence interactions in the duplex stem on hairpin loop formation were investigated by evaluating Fend(n) in individual fitting procedures using two of the published sets of nearest-neighbor stacking interactions in DNA evaluated in 100 mM NaCl and given by Wartell and Benight, 1985. In all cases, evaluated values of Fend(n) were obtained that provided exact theoretical predictions of the experimental transitions. Results of the evaluations indicate: (1) Evaluated free-energies of hairpin loop formation are only slightly dependent on loop sequences examined. At the transition temperature, Tm, the free-energy of forming a loop of four bases is approximately equal for T4, G4, or C4 loops and varies from 3.9 to 4.8 kcal/mole depending on the set of nearest-neighbor interactions employed in the evaluations. This result suggests, in light of the observed differences in stability between the T4, G4, and C4 loop hairpins, that sequence-dependent interactions between base residues of the loop are most likely not the source of the enhanced stability of a T4 loop.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Single crystal X-ray diffraction techniques have been used to determine the structure of the DNA octamer d(G-G-G-G-C-T-C-C) at a resolution of 2.25 A. The asymmetric unit consists of two strands coiled about each other to produce an A-type DNA helix. The double helix contains six G . C Watson-Crick base-pairs and two G . T mismatched base-pairs. The mismatches adopt a "wobble" type structure in which both bases retain their major tautomer forms. The double helix is able to accommodate this G . T pairing with little distortion of the overall helical conformation. Crystals of this octamer melt at a substantially lower temperature than do those of a related octamer also containing two G . T base-pairs. We attribute this destabilization to disruption of the hydration network around the mismatch site combined with changes in intermolecular packing. Full details are given of conformational parameters, base stacking, intermolecular contacts and hydration involving 52 solvent molecules.  相似文献   

19.
Tanaka F  Kameda A  Yamamoto M  Ohuchi A 《Biochemistry》2004,43(22):7143-7150
All 64 possible thermodynamic parameters for a single-bulge loop in the middle of a sequence were derived from optical melting studies. The relative stability of a single bulge depended on both the type of bulged base and its flanking base pairs. The contribution of the single bulge to helix stability ranged from 3.69 kcal/mol for a TAT bulge to -1.05 kcal/mol for an ACC bulge. Thermodynamics for 10 sequences with a GTG bulge were determined to test the applicability of the nearest-neighbor model to a single-bulge loop. Thermodynamic parameters for the GTG bulge and Watson-Crick base pairs predict, DeltaH degrees, DeltaS degrees, and T(M)(50 microM) values with average deviations of 3.0%, 4.3%, 4.7%, and 0.9 degrees C, respectively. The prediction accuracy was within the limits of what can be expected for a nearest-neighbor model. This certified that the thermodynamics for single-bulge loops can be estimated adequately using a nearest-neighbor model.  相似文献   

20.
Davis AR  Znosko BM 《Biochemistry》2008,47(38):10178-10187
Due to their prevalence and roles in biological systems, single mismatches adjacent to G-U pairs are important RNA structural elements. Since there are only limited experimental values for the stability of single mismatches adjacent to G-U pairs, current algorithms using free energy minimization to predict RNA secondary structure from sequence assign predicted thermodynamic values to these types of single mismatches. Here, thermodynamic data are reported for frequently occurring single mismatches adjacent to at least one G-U pair. This experimental data can be used in place of predicted thermodynamic values in algorithms that predict secondary structure from sequence using free energy minimization. When predicting the thermodynamic contributions of previously unmeasured single mismatches, most algorithms apply the same thermodynamic penalty for an A-U pair adjacent to a single mismatch and a G-U pair adjacent to a single mismatch. A recent study, however, suggests that the penalty for a G-U pair adjacent to a tandem mismatch should be 1.2 +/- 0.1 kcal/mol, and the penalty for an A-U pair adjacent to a tandem mismatch should be 0.5 +/- 0.2 kcal/mol [Christiansen, M. E. and Znosko, B. M. (2008) Biochemistry 47, 4329-4336]. Therefore, the data reported here are combined with the existing thermodynamic dataset of single mismatches, and nearest neighbor parameters are derived for an A-U pair adjacent to a single mismatch (1.1 +/- 0.1 kcal/mol) and a G-U pair adjacent to a single mismatch (1.4 +/- 0.1 kcal/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号