首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sorption of cadmium from aqueous solution using pretreated rice husk   总被引:9,自引:0,他引:9  
The sorption of Cd(II) from aqueous solution by rice husk, a surplus agricultural byproduct was investigated. Some simple and low-cost chemical modifications resulted in increasing the sorption capacity of raw rice husk (RRH) from 8.58 mg/g to 11.12, 20.24, 16.18 mg/g and reducing the equilibrium time from 10 h of RRH to 2, 4 and 1 h for epichlorohydrin treated rice husk (ERH), NaOH treated rice husk (NRH), sodium bicarbonate treated rice husk (NCRH), respectively. The effect of pH, sorption kinetics and isotherms were studied in batch experiments. Good correlation coefficient was obtained for pseudo second-order kinetic model, which agreed with chemisorption as the rate-limiting mechanism. Sorption isotherm test showed that equilibrium sorption data were better represented by Langmuir model than the Freundlich model. The highly efficient low cost and the rapid uptake of Cd(II) by NCRH indicated that it could be an excellent alternative for the removal of heavy metal by sorption process.  相似文献   

2.
Summary An indigenous strain of blue green microalga, Synechococcus sp., isolated from wastewater, was immobilized onto loofa sponge discs and investigated as a potential biosorbent for the removal of cadmium from aqueous solutions. Immobilization has enhanced the sorption of cadmium and an increase of biosorption (21%) at equilibrium was noted as compared to free biomass. The kinetics of cadmium biosorption was extremely rapid, with (96%) of adsorption within the first 5 min and equilibrium reached at 15 min. Increasing initial pH or initial cadmium concentration resulted in an increase in cadmium uptake. The maximum biosorption capacity of free and loofa immobilized biomass of Synechococcus sp. was found to be 47.73 and 57.76 mg g−1 biomass respectively. The biosorption equilibrium was well described by Langmuir adsorption isotherm model. The biosorbed cadmium was desorbed by washing the immobilized biomass with dilute HCl (0.1 M) and desorbed biomass was reused in five biosorption–desorption cycles without an apparent decrease in its metal biosorption capacity. The metal removing capacity of loofa immobilized biomass was also tested in a continuous flow fixed-bed column bioreactor and was found to be highly effective in removing cadmium from aqueous solution. The results suggested that the loofa sponge-immobilized biomass of Synechococcus sp. could be used as a biosorbent for an efficient removal of heavy metal ions from aqueous solution.  相似文献   

3.
A green type composite biosorbent composed of pine, oak, hornbeam, and fir sawdust biomasses modified with cetyltrimethylammonium bromide (CTAB) was first used for biosorption of an unsafe synthetic food dye, Food Green 3 from liquid medium in this study. Batch studies were carried by observing the effects of pH, dye concentration, biosorbent amount, and contact time. The equilibrium data were analyzed using Freundlich, Langmuir, and Dubinin–Radushkevich equations. Freundlich model gave a better conformity than other equations. The maximum dye removal potential of biosorbent was found to be 36.6 mg/g based on Langmuir isotherm. The pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were applied to clarify the process kinetics of biosorption. The mechanism studies suggested the biosorption process obeying Elovich kinetics and involving pore diffusion. The estimated values of biosorption free energy from Dubinin–Radushkevich isotherm (E value <8 kJ/mol) and thermodynamic studies (0 < ΔG° < ?20 kJ/mol) implied a spontaneous, feasible, and physical process. Hence, this investigation suggested that the CTAB modified mix sawdust biomass could be a promising biosorbent for biosorption of such problematic dyes from impacted media.  相似文献   

4.
The ability of the brown seaweed, Turbinaria conoides to absorb rhodamine B (RB) from aqueous solution was investigated in a batch system. The effects of various experimental parameters (e.g., morphology, initial dye concentration, temperature, and pH) were investigated and optimal experimental condition was ascertained. The results revealed that sorption capacity of T. conoides increased with increasing temperature, and decreasing initial dye concentration and pH. Sorption equilibrium studies using Langmuir and Freundlich models demonstrated that RB biosorption fitted well to the Langmuir isotherm. This study suggested that T. conoides can be used as a potential biosorbent for the removal of RB from wastewater.  相似文献   

5.
This study involved the development of formaldehyde-treated, deseeded sunflower head waste–based biosorbent (FSH) for the biosorption of Cr(VI) from aqueous solution and industrial wastewater. Batch-mode experiments were conducted to determine the kinetics, sorption isotherms, effect of pH, initial Cr(VI) concentration, biosorbent dose, and contact time. The results demonstrated that FSH can sequester Cr(VI) from the aqueous solution. The maximum sorption occurred at pH = 2.0, biosorbent dose = 4.0 g/L, concentration of 100 mg/L at 25°C at 180 rpm after 2 h contact time. The FSH had an adsorption capacity of 7.85 mg/g for Cr(VI) removal at pH 2.0. The rate of adsorption was rapid, and equilibrium was attained within 2 h. The equilibrium sorption data fitted the Langmuir isotherm model, which was further confirmed by the chi-square test.  相似文献   

6.
Three kinds of filamentous fungi (Rhizopus arrhizus, Trametes versicolor, Aspergillus niger) were tested for their ability to adsorb Gryfalan Black RL metal-complex dye as a function of pH, temperature and dye concentration. R. arrhizus and T. versicolor exhibited the maximum dye uptake at pH 2.0 and at 25 degrees C while A. niger performed the highest dye biosorption at pH 1.0 and at 35 degrees C. Sorption capacity of each biosorbent increased with increasing initial dye concentration. Among the three fungi, R. arrhizus was the most effective biosorbent showing a maximum dye uptake of 666.7 mg g(-1). The Langmuir model described the equilibrium data of each dye-fungus system accurately in the concentration and temperature ranges studied. Kinetic analysis indicated that both adsorption kinetics and internal diffusion played an important role on controlling the overall adsorption rate for each fungus. Thermodynamic analysis verified that A. niger biosorption was endothermic while the others were exothermic.  相似文献   

7.
This study investigates the equilibrium, kinetics and thermodynamics of Nickel(II) biosorption from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass. The optimum biosorption conditions like pH, contact time, biomass dosage, initial metal ion concentration and temperaturewere determined in the batch method. The biosorbent was characterized by FTIR, SEM and BET surface area analysis. The experimental data were analyzed in terms of pseudo-first-order, pseudo-secondorder and intraparticle diffusion kinetic models, further it was observed that the biosorption process of Ni(II) ions closely followed pseudo-second-order kinetics. The equilibrium data of Ni(II) ions at 303, 313, and 323 K were fitted to the Langmuir and Freundlich isotherm models. Langmuir isotherm provided a better fit to the equilibrium data andthe maximum monolayer biosorption capacity of the T. versicolor(rainbow) biomass for Ni(II) was 212.5 mg/g at pH 4.0. The calculated thermodynamic parameters, ΔG, ΔH, and ΔS, demonstrated that the biosorption of Ni(II) ions onto the T. versicolor (rainbow) biomass was feasible, spontaneous and endothermic at 303 ~ 323 K. The performance of the proposed fungal biosorbent was also compared with that of many other reported sorbents for Nickel(II) removal and it was observed that the proposed biosorbent is effective in terms of its high sorption capacity.  相似文献   

8.
The dead Kluyveromyces marxianus biomass, a fermentation industry waste, was used to explore its sorption potential for lead, mercury, arsenic, cobalt, and cadmium as a function of pH, biosorbent dosage, contact time, agitation speed, and initial metal concentration. The equilibrium data fitted the Langmuir model better for cobalt and cadmium, but Freundlich isotherm for all metals tested. At equilibrium, the maximum uptake capacity (Qmax) was highest for lead followed by mercury, arsenic, cobalt, and cadmium. The RL values ranged between 0–1, indicating favorable sorption of all test metals by the biosorbent. The maximum Kf value of Pb showed its efficient removal from the solution. However, multi-metal analysis depicted that sorption of all metals decreased except Pb. The potentiometric titration of biosorbent revealed the presence of functional groups viz. amines, carboxylic acids, phosphates, and sulfhydryl group involved in heavy metal sorption. The extent of contribution of functional groups and lipids to biosorption was in the order: carboxylic>lipids>amines>phosphates. Blocking of sulfhydryl group did not have any significant effect on metal sorption.  相似文献   

9.
Removal of heavy metals present in wastewaters has been a major concern due to their non-biodegradability and toxicity. Removal of copper ion using NaOH treated Rhizopus oryzae biomass was investigated in a batch reactor. The copper uptake exhibited substantial enhancement both in terms of kinetics of uptake as well as the loading capacity. The copper biosorption by viable and pretreated fungal biomass fit well to a Lagergren's pseudo second order reaction in comparison to pseudo first order kinetics. Investigation on effect of pH indicated improved performance in the range of pH 4-6 in alkali treated biomass. Copper uptake exhibited by viable biomass was highest at 21 degrees C, unlike pretreated biomass that showed maximum uptake across the range of temperature 21-55 degrees C. The maximum copper loading capacity of the viable and pretreated biomass according to Langmuir isotherm was 19.4 and 43.7 mg/g, respectively. Distribution coefficient of pretreated biomass showed improvement at lower residual concentration, indicating a change in the nature of binding by the treated biomass. Copper uptake decreased with an increasing dose of biosorbent, although enhancement in the total metal ion removal was observed at higher dose.  相似文献   

10.
The feasibility of using fish (Labeo rohita) scales as low-cost biosorbent for the removal of hazardous Malachite Green (MG) dye from aqueous solutions was investigated. Employing a batch experimental setup, the effect of operational parameters such as biosorbent dose, initial solution pH, contact time, and temperature on the dye removal process was studied. The equilibrium biosorption data followed both Langmuir and Freundlich isotherm models, whereas the experimental kinetic data fitted well to the pseudo-second-order kinetic model. Thermodynamic study indicated spontaneous and endothermic nature of the biosorption process. The results suggest that fish scales could be used as an effective biosorbent for removal of MG dye from aqueous solutions.  相似文献   

11.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

12.
Sorption potential of pretreated crab and arca shell biomass for lead and copper from aqueous media was explored. The effects of pH, initial concentration, biosorbent dosage and contact time were studied in batch experiments. Effects of common ions like sodium, potassium, calcium and magnesium on the sorption capacity of pretreated crab and arca biomasses were also studied. At equilibrium, the maximum uptake by crab shell biomass was 19.83+/-0.29 and 38.62+/-1.27 mg/g for lead and copper, respectively. In case of arca shell biomass the maximum uptake capacity was 18.33+/-0.44 mg/g and 17.64+/-0.31 mg/g for lead and copper, respectively. Combined effect of all the common ions up to 50 microg/ml concentration was negligible for both the metals using both biomasses. Sorption isotherms were studied to explain the removal mechanism of both elements by fitting isotherms data into Lagergren, Freundlich and Langmuir equations.  相似文献   

13.
A batch study on the removal of As(III) and As(V) ions from contaminated water by biosorption using powdered Psidium guajava (Guava) leaf as biosorbent was carried out in the present work. FT-IR (Fourier transform infrared) and SEM (scanning electron microscopy) were used to characterize the surface of the biosorbent. The effect of sorption parameters such as pH, temperature (T c), adsorbent dose (D c), and contact time (t c) were studied. At optimum treatment conditions, the maximum uptake of 1.06 mg of As(III) per gram and 2.39 mg of As(V) per gram onto the surface of biosorbent were obtained. Langmuir and Freundlich isotherm models were examined for sorption equilibrium at various temperatures. The sorption isotherm was favorable with the Freundlich model with the experimental data. Furthermore, higher uptake kinetics was tested for the pseudo-first-order and pseudo-second-order models. The pseudo-second-order model appeared to be the more suitable model to describe arsenic biosorption. ΔG 0 values were negative at all temperatures, confirming the feasible and spontaneous nature of the biosorption process. Solvent desorption studies help in understanding the mechanism of the adsorption process and also to check the stability of the loaded/spent adsorbents. HCl was found to show maximum effectiveness in the desorption of both As(III) and As(V) with the comparison of other solvents.  相似文献   

14.
Biosorption technique was used for removal of cadmium under different conditions from water environment using a biosorbent, Volveriella volvaceas, locally growing fruit bodies of mushroom. Effects of different parameters like pH, sorbent concentration, ionic strength on the removal efficiency of cadmium by V. volvacea were carried out in continuation with adsorption kinetics and equilibrium isotherm experiments. From the kinetics studies it was found that nearly 95% of the total cadmium removal was achieved from cadmium spiked distilled water within first 15 minutes. Isotherm data was best fitted to linearised Langmuir equation and the sorption capacity was found to be varying from 9.13 to 9.33 mg/g for different sizes of sorbent. The uptake of cadmium(II) is a function of pH of the solution and increases with the increasing pH. Increasing ionic strength and the presence of soluble complexing agents such as ethylene diamine tetraacetic acid (EDTA) decrease the sorption of cadmium (II). The presence of other diavalent cations like calcium and magnesium impedes the uptake of cadmium (II). The presence of chloride ion has no significant effect on cadmium (II) removal. The spent biosorbent can effectively be regenerated with acid and can then be reused.The present work was carried out by the financial support in terms of fellowship under the cultural exchange programme of the Indo-Bangladesh government. Special thanks to the Director, Bangladesh Institute of Technology, Dhaka, Bangladesh, for providing leave, which enabled the author in carrying out the research work.  相似文献   

15.
A biosorbent was prepared by coating the fibrous network of loofa sponge (Luffa cylindrica) with a thin film of calcium alginate. Alginate-coated loofa sponge removed Cd(II) rapidly, reaching equilibrium loading of 124 mg g(-1) in 30 min. Seventy % of equilibrium uptake was achieved in 10 min. In contrast, it took 240 min for alginate beads to reach a loading equilibrium of 88 mg g(-1) under identical conditions. The biosorption behaviour followed the Langmuir adsorption isotherm and the ACLS biosorbent was shown to be highly effective in removing Cd(II) from a 10 mg l(-1) solution in a continuous flow fixed-bed column bioreactor.  相似文献   

16.
Cyanobacteria have been found to be potential biosorbents of metal ions from waste water. The Pb(2+) removal capacity of growing cells of indigenous cyanobacterium Oscillatoria laete-virens (Crouan and Crouan) Gomont was studied under batch experiments and it was found capable of removing Pb(2+) of lower concentrations (below 100?mg L(-1)). The effects of different concentrations of Pb(2+), on the growth rate of alga were also evaluated. The research parameters include the pH of the solution, contact time, initial concentration of Pb(2+), and culture density. Of the parameters studied, the pH of the solution was found to be the most crucial. The removal of Pb(2+) peaked at an initial pH of 5. The data obtained from the equilibrium experiments were found well fitting with the Langmuir isotherm with a maximum sorptive capacity (q (max)) of 20.36?mg?g(-1), indicating a good biosorbtive potential of growing cells. This was confirmed using scanning electron microscope and energy dispersive X-ray analysis, which showed the adsorption of lead on the surface of the cell. The species could tolerate a concentration as high as 60?mg L(-1) of Pb(2+). It was observed that the removal obeyed the pseudo-second-order kinetics. The percentage removal was found to decrease with increasing metal concentration, from 10 to 100?mg L(-1). FTIR analysis indicates the involvement of amino, carboxylic and amide groups in the sorption process. Among the desorbing agents evaluated, an efficient recovery of 90.2?% was achieved by HCl, in 24?h. Thus Oscillatoria laete-virens (Crouan and Crouan) Gomont seems to be a promising metal biosorbent for the treatment of Pb(2+), in waste waters.  相似文献   

17.
18.
High levels of heavy metals like copper ions in many industrial based effluents lead to serious environmental and health problems. Biosorption is a potential environmental biotechnology approach for biotreatment of aquatic sites polluted with heavy metal ions. Seaweeds have received great attention for their high bioremediation potential in recent years. However, the co-application of marine macroalgae for removal of heavy metals from wastewater is very limited. Thus, for the first time in literature, a coastal seaweed community composed of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species was applied to remove copper ions from synthetic aqueous medium in this study. The biosorption experiments in batch mode were conducted to examine the effects of operating variables including pH, biosorbent amount, metal ion concentration and contact time on the biosorption process. The biosorption behavior of biosorbent was described by various equilibrium, kinetic and thermodynamic models. The biosorption of copper ions was strongly influenced by the operating parameters. The results indicated that the equilibrium data of biosorption were best modeled by Sips isotherm model. The values of mean free energy of biosorption computed from Dubinin-Radushkevich isotherm model and the standard Gibbs free energy change indicated a feasible, spontaneous and physical biotreatment system. The pseudo-second-order rate equation successfully defined the kinetic behavior of copper biosorption. The pore diffusion also played role in the control of biosorption process. The maximum copper uptake capacity of biosorbent was found to be greater than those of many other biosorbents. The obtained results revealed that this novel biosorbent could be a promising material for copper ion bioremediation implementations.  相似文献   

19.
用废啤酒酵母吸附水溶液中Cu2+,考察了溶液pH值、Cu2+浓度和吸附时间对Cu2+吸附的影响。结果表明:废啤酒酵母吸附Cu2+在4-6个小时内达到吸附平衡,酸性条件利于吸附,以pH为5时最佳,吸附等温曲线符合Langmuir模式。用电位滴定及FTIR分析的方法确定生物吸附剂主要含有磺酸基、羧基及氨基等功能团。生物吸附剂对Cu2+的吸附以单分子层的化学吸附为主,功能团在不同的pH条件下呈现不同的电离性能,在吸附过程中发挥重要作用。  相似文献   

20.
Jatropha seed press cake (JPC), a biodeisel waste, was investigated for its use as biosorbent for Cr(VI) removal from wastewater. The acid-pretreated biomass exhibited 1.9-fold higher biosorption efficiency for Cr(VI). The Cr(VI) biosorption efficiency was found to increase with decrease in pH of aqueous medium. The adsorption capacity of biosorbent for Cr(VI) increased with increasing concentration of Cr(VI). The biosorption of Cr(VI) by acid-treated JPC followed a pseudo-second-order kinetics. The results of equilibrium studies showed that the biosorption process fitted the Langmuir isotherm model, with a maximum adsorption capacity of 22.727 mg of Cr(VI)/g of biosorbent at 30°C. The activation energy was found to be 27.114 kJ/mol, suggesting that the adsorption process was mainly a physical process. The important thermodynamic parameters of adsorption (ΔG, ΔH, andΔS) were determined, which indicated that the Cr(VI) sorption by JPC is a spontaneous and endothermic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号