首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The melanization cascade, in which phenoloxidase is the terminal enzyme, appears to play a key role in recognition of and defense against microbial infections in invertebrates. Here, we show that phenoloxidase activity and melanization are important for the immune defense toward a highly pathogenic bacterium, Aeromonas hydrophila, in the freshwater crayfish, Pacifastacus leniusculus. RNA interference-mediated depletion of crayfish prophenoloxidase leads to increased bacterial growth, lower phagocytosis, lower phenoloxidase activity, lower nodule formation, and higher mortality when infected with this bacterium. In contrast, if RNA interference of pacifastin, an inhibitor of the crayfish prophenoloxidase activation cascade, is performed, it results in lower bacterial growth, increased phagocytosis, increased nodule formation, higher phenoloxidase activity, and delayed mortality. Our data therefore suggest that phenoloxidase is required in crayfish defense against an infection by A. hydrophila, a highly virulent and pathogenic bacterium to crayfish.  相似文献   

3.
New structural insights into lectin-type proteins of the immune system.   总被引:3,自引:0,他引:3  
New structural data have emerged for the ligand-binding sites of C-type lectin domains and C-type lectin-like domains of receptors of the immune system. These include binding sites for oligosaccharide or polypeptide ligands, or both oligosaccharide and polypeptide ligands. The structural basis for the binding of a lectin domain of the beta-trefoil family to different sulfooligosaccharide sequences has been revealed. Lectin activity has been documented for a beta/alpha TIM barrel fold that does not have the chitinase activity of the prototype enzyme with this fold.  相似文献   

4.
Shin SW  Zou Z  Raikhel AS 《EMBO reports》2011,12(9):938-943
Microbial infections in the mosquito Aedes aegypti activate the newly identified CLSP1 and CLSP2 genes, which encode modular proteins composed of elastase-like serine protease and C-type lectin domains. These genes are predominantly regulated by the immune deficiency pathway, but also by the Toll pathway. Silencing of CLSP2, but not CLSP1, results in the activation of prophenoloxidase (PPO), the terminal enzyme in the melanization cascade, suggesting that CLSP2 is a negative modulator of this reaction. Haemolymph PPO activation is normally inhibited in the presence of Plasmodium parasites, but in CLSP2-depleted mosquitoes, the Plasmodium-induced block of melanization is reverted, and these mosquitoes are refractory to the parasite. Thus, CLSP2 is a new component of the mosquito immune response.  相似文献   

5.
6.
Lectins are potential immune recognition proteins. In this study, a novel C-type lectin (Pc-Lec1) is reported in freshwater crayfish Procambarus clarkii. Pc-Lec1 encodes a protein of 163 amino acids with a putative signal peptide and a single carbohydrate recognition domain. It was constitutively expressed in various tissues of a normal crayfish, especially in the hepatopancreas and gills. Expressions of Pc-Lec1 were up-regulated in the hepatopancreas and gills of crayfish challenged with Vibrio anguillarum, Staphylococcus aureus, or the white spot syndrome virus. Recombinant mature Pc-Lec1 bound bacteria and polysaccharides (peptidoglycan, lipoteichoic acid, and lipopolysaccharide) but did not agglutinate bacteria. Pc-Lec1 enhanced hemocyte encapsulation of the sepharose beads in vitro, and the blocking of beads by a polyclonal antibody inhibited encapsulation. Pc-Lec1 promoted clearance of V. anguillarum in vivo. These results suggest that Pc-Lec1 is a pattern recognition receptor and participates in cellular immune response. Pc-Lec1 performs its function as an opsonin by enhancing the encapsulation or clearance of pathogenic bacteria.  相似文献   

7.
Processing of crayfish hemocyanin subunits into phenoloxidase   总被引:3,自引:0,他引:3  
Hemocyanin and phenoloxidase are both copper-binding proteins involved in the immune system for a wide range of animal species. In crayfish, these proteins were purified and characterized from plasma and hemocytes, respectively. Recently, we have reported that the processing of one of the hemocyanin subunits occurs by a proteolytic cleavage under acidic conditions which results in the release of an antibacterial peptide designated as astacidin 1 from the C-terminus [J. Biol. Chem. 278 (2003) 7927]. In the present paper, we show that cleavage of crayfish hemocyanin subunit 2 at the N-terminal part results in that the processed hemocyanin exhibits phenoloxidase activity. The calculated mass of the cloned hemocyanin 2 is 78,372Da, which corresponds to the size obtained after SDS-PAGE under reducing conditions of the purified hemocyanin and pI is estimated to be 5.70. The complete hemocyanin 2 sequence shows 74% and 44% similarity with hemocyanin 1 and prophenoloxidase of crayfish, respectively. Crayfish hemocyanin exhibited phenoloxidase activity in presence of trypsin, but no activity could be detected if treated with sodium dodecyl sulfate. These results show that hemocyanin of crayfish is involved in several immune responses such as an oxygen carrier protein, as a precursor for an antibacterial peptide, and a molecule with phenoloxidase function.  相似文献   

8.
C-type lectins are a family of calcium-dependent carbohydrate-binding proteins. In the present study, a C-type lectin (designated as AiCTL5) was identified and characterized from Argopecten irradians. The full-length cDNA of AiCTL5 was of 673 bp, containing a 5' untranslated region (UTR) of 24 bp, a 3' UTR of 130 bp with a poly (A) tail, and an open reading frame (ORF) of 519 bp encoding a polypeptide of 172 amino acids with a putative signal peptide of 17 amino acids. A C-type lectin-like domain (CRD) containing 6 conserved cysteines and a putative glycosylation sites were identified in the deduced amino acid sequence of AiCTL5. AiCTL5 shared 11%-27.5% identity with the previous reported C-type lectin from A. irradians. The cDNA fragment encoding the mature peptide of AiCTL5 was recombined into pET-21a (+) with a C-terminal hexa-histidine tag fused in-frame, and expressed in Escherichia coli Origami (DE3). The recombinant AiCTL5 (rAiCTL5) agglutinated Gram-negative E. coli TOP10F' and Listonella anguillarum, but did not agglutinate Gram-positive bacteria Bacillus thuringiensis and Micrococcus luteus, and the agglutination could be inhibited by EDTA, indicating that AiCTL5 was a Ca(2+)-dependent lectin. rAiCTL5 exhibited a significantly strong activity to bind LPS from E. coli, which conformed to the agglutinating activity toward Gram-negative bacteria. Moreover, rAiCTL5 also agglutinated rabbit erythrocytes. These results indicated that AiCTL5 could function as a pattern recognition receptor to protect bay scallop from Gram-negative bacterial infection, and also provide evidence to understand the structural and functional diverse of lectin.  相似文献   

9.
Lectins are glycan-binding receptors that recognize glycan epitopes on foreign pathogens and in the host systems. They can be involved in functions that include innate immunity, development, immune regulation and homeostasis. Several lectins have been purified and characterized from fish species. In this work, using cation-exchange chromatography, a galactose-specific lectin belonging to the family of C-type lectins was isolated from the venom of the Brazilian venomous fish Thalassophryne nattereri. Nattectin is a basic, non-glycosilated, 15 kDa monomeric protein. It exhibits hemagglutination activity that is independent of Ca2+. We also demonstrated a lectin activity for Nattectin in the innate immune system, especially in neutrophil mobilization in mice, indicating that marine organisms are source of immunomodulator agents.  相似文献   

10.
Shi XZ  Yu XQ 《Amino acids》2012,42(6):2383-2391
Our previous research showed that immulectin-2 (IML-2), a C-type lectin from the tobacco hornworn, Manduca sexta, is a pattern recognition receptor (PRR) that can bind to pathogen-associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS), peptidoglycan (PG) and β-1,3-glucan, and IML-2 plays an important role in cellular encapsulation, melanization, phagocytosis, and prophenoloxidase (proPO) activation. Unlike most mammalian C-type lectins that contain a single carbohydrate-recognition domain (CRD), IML-2 is composed of tandem CRDs, and the C-terminal CRD2 contains an extended loop, which is not present in most C-type CRDs. We hypothesize that the extended loop may participate in ligand binding, encapsulation, melanization, phagocytosis and/or proPO activation in M. sexta. To test this hypothesis, two deletion mutant proteins (IML-2Δ220-244 and IML-2Δ220-257), in which the extended loop of the CRD2 was partially or completely deleted, were expressed and purified. By comparing the characteristics of recombinant IML-2, IML-2Δ220-244 and IML-2Δ220-257, we found that deletion of the extended loop in CRD2 impaired the ability of IML-2 to bind microbial PAMPs and to stimulate proPO activation, indicating that the extended loop of IML-2 plays an important role in ligand binding and biological functions.  相似文献   

11.
Summary The role of exocytosis in the cellular defence reactions of arthropods was investigated using in vitro cultures of isolated haemocytes (blood cells) from the freshwater crayfish Pacifastacus leniusculus, and the shore crab Carcinus maenas. In both species, activated lysates of those cell types that contain the prophenoloxidase activating system (granular cells of crab and crayfish and semigranular cells of crayfish) were found to induce degranulation (exocytosis) of semigranular and granular cells. A cell lysate, in which the prophenoloxidase system was kept inactive, did not have this effect. Limited degranulation of granular cells of crab was also induced by lipopolysaccharides as has earlier been shown for crayfish semigranular cells. The phagocytic capability of semigranular cells from crayfish was lost after exocytosis induced by the Ca2+ ionophore A23187, and under no conditions were the granular cells of crabs or crayfish seen to ingest bacteria in vitro. An opsonic function for the attaching proteins of a 1,3-glucan-activated haemocyte lysate was demonstrated using the phagocytic hyaline cells from crabs. Phenoloxidase appeared to lack opsonic properties.We suggest that, in crustaceans, opsonization takes place through hierarchically stimulated exocytotic release, and biochemical activation of the prophenoloxidase activating system: first from lipopolysaccharide-sensitive cells (semigranular cells of crayfish or granular cells of crabs) and then from granular cells, triggered by the initially released and activated prophenoloxidase system. Finally, sticky proteins of the activated prophenoloxidase system coat the invader, rendering it susceptible to the phagocytes (hyaline cells in both crab and crayfish and, to a lesser extent, semigranular cells of crayfish). These processes would, together, constitute a cellular communication pathway not previously demonstrated for invertebrates.Abbreviations DMSO dimethyl sulfoxide - L-DOPA L-dihydroxy-phenylalanine - GLS granular cell lysate supernatant - HLS haemocyte lysate supernatant - HyLS hyaline cell lysate supernatant - LPS lipopolysaccharide - proPO prophenoloxidase - SGLS semigranular cell lysate supernatant - SITS 4-acetamido-4-isothiocyanatostilbene-2,2-disulfonic acid disodium salt  相似文献   

12.
《Insect Biochemistry》1991,21(4):363-373
A prophenoloxidase was purified from blood cells of the crayfish Pacifastacus leniusculus. The purified proenzyme was homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and had a molecular mass of 76 kDa under both non-reducing and reducing conditions. The crayfish prophenoloxidase was a glycoprotein, with an isoelectric point of about 5.4.A 36 kDa serine proteinase, isolated and purified from crayfish blood cells (Aspán et al., 1990b, Insect Biochem.20, 709–718), could convert the 76 kDa prophenoloxidase to phenoloxidase by an apparent proteolytic cleavage, since the molecular masses of two active enzymes, phenoloxidases, were 60 and 62 kDa. A commercial serine proteinase, trypsin, activated prophenoloxidase to phenoloxidase, and as a result a 60 kDa protein was produced.In the blood cells of crayfish four serine proteinases or 3H-DFP binding proteins are present, with masses of 36, 38, 50 and 67 kDa. However, 3H-DFP labelling of proteins in blood cells lysate, prepared in its inactive form, only yielded labelled bands of 50 and 67 kDa, whereas addition of an elicitor to prophenoloxidase system activation, a β-1,3-glucan, resulted in the appearance of four 3H-DFP labelled proteins, with molecular masses of 67, 50, 38 and 36 kDa, respectively. Thus, the 36 kDa endogenous serine proteinase, the prophenoloxidase activating enzyme, ppA, may be present as an inactive precursor in crayfish blood cells. The 38 and 36 kDa proteinases could both cleave the chromogenic peptide S-2337 [Bz-Ile-Glu-(γ-O-Piperidyl)-Gly-Arg-p-nitroaniline], and specifically bind prophenoloxidase.These results show that crayfish prophenoloxidase, the terminal enzyme of the prophenoloxidase activating cascade, a proposed defence pathway in arthropod blood, can be converted to active enzyme by an apparent proteolytic cleavage, not only by a commercial proteinase, but also by an endogenous serine type proteinase.  相似文献   

13.
C-type lectins play important roles in the innate immune system of crustaceans. In this study, a novel C-type lectin gene, designated as PcLec4, was obtained from the red swamp crayfish (Procambarus clarkii). Quantitative real-time polymerase chain reaction revealed that PcLec4 is mainly expressed in the crayfish hepatopancreas and intestine, and the PcLec4 mRNA expression is upregulated after challenged with the bacteria Vibrio anguillarum. PcLec4 was recombinantly expressed in Escherichia coli and anti-PcLec4 polyclonal antiserum was prepared. Binding experiments revealed that the recombinant PcLec4 binds to various bacteria and polysaccharides on the bacterial surface, which suggests that PcLec4 recognizes bacterial pathogens. Overexpression of PcLec4 in crayfish using the pIeLec4 vector was performed. The results show that the crayfish overexpressing PcLec4 eliminate injected V. anguillarum more quickly than the control, which suggests that PcLec4 elicits further immune response for removing invading bacteria. The results of the survival experiment confirmed the function of PcLec4 in resisting V. anguillarum because PcLec4 overexpression in crayfish significantly increased the crayfish survival rate. These results reveal that PcLec4 has an important role in the antibacterial immunity of crayfish, and in vivo PcLec4 overexpression might be used as a disease control strategy in aquiculture.  相似文献   

14.
How C-type lectins detect pathogens   总被引:10,自引:0,他引:10  
Glycosylation of proteins has proven extremely important in a variety of cellular processes, including enzyme trafficking, tissue homing and immune functions. In the past decade, increasing interest in carbohydrate-mediated mechanisms has led to the identification of novel carbohydrate-recognizing receptors expressed on cells of the immune system. These non-enzymatic lectins contain one or more carbohydrate recognition domains (CRDs) that determine their specificity. In addition to their cell adhesion functions, lectins now also appear to play a major role in pathogen recognition. Depending on their structure and mode of action, lectins are subdivided in several groups. In this review, we focus on the calcium (Ca(2+))-dependent lectin group, known as C-type lectins, with the dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) as a prototype type II C-type lectin organized in microdomains, and their role as pathogen recognition receptors in sensing microbes. Moreover, the cross-talk of C-type lectins with other receptors, such as Toll-like receptors, will be discussed, highlighting the emerging model that microbial recognition is based on a complex network of interacting receptors.  相似文献   

15.
王金星 《微生物学报》2018,58(5):760-772
对虾等甲壳类动物体内存在2个菌群:肠道菌群和血淋巴菌群。肠道菌群的种类和数量较多,而血淋巴菌群较少。两种菌群均包含益生菌和致病菌,在宿主体内代谢、营养和免疫反应中发挥重要功能。肠道菌群动态平衡的调控主要通过双氧化酶产生的活性氧来完成;血淋巴菌群通过C-型凝集素调控的抗菌肽表达及酚氧化酶原激活系统来维持其动态平衡。阐明对虾等甲壳类体内菌群的组成、功能和动态平衡调控的机理,可以为对虾等经济甲壳类健康养殖的微生态制剂开发和疾病控制提供指导。  相似文献   

16.
17.
Th17 cells are a recently discovered subset of T helper cells characterised by the release of IL-17, and are thought to be important for mobilization of immune responses against microbial pathogens, but which also contribute to the development of autoimmune diseases. The identification of C-type lectin receptors which are capable of regulating the balance between Th1 and Th17 responses has been of particular recent interest, which they control, in part, though the release of Th17 inducing cytokines. Many of these receptors recognise fungi, and other pathogens, and play key roles in driving the development of protective anti-microbial immunity. Here we will review the C-type lectins that have been linked to Th17 type responses and will briefly examine the role of Th17 responses in murine and human anti-fungal immunity.  相似文献   

18.
A galactose-specific C-type lectin has been purified from a pupal extract of Drosophila melanogaster. This lectin gene, named DL1 (Drosophila lectin 1), is part of a gene cluster with the other two galactose-specific C-type lectin genes, named DL2 (Drosophila lectin 2) and DL3 (Drosophila lectin 3). These three genes are expressed differentially in fruit fly, but show similar haemagglutinating activities. The present study characterized the biochemical and biological properties of the DL1 protein. The recombinant DL1 protein bound to Escherichia coli and Erwinia chrysanthemi, but not to other Gram-negative or any other kinds of microbial strains that have been investigated. In addition, DL1 agglutinated E. coli and markedly intensified the association of a Drosophila haemocytes-derived cell line with E. coli. For in vivo genetic analysis of the lectin genes, we also established a null-mutant Drosophila. The induction of inducible antibacterial peptide genes was not impaired in the DL1 mutant, suggesting that the galactose-specific C-type lectin does not participate in the induction of antibacterial peptides, but possibly participates in the immune response via the haemocyte-mediated mechanism.  相似文献   

19.
Mannan-binding protein (MBP) is a C-type serum lectin that is an important constituent of the innate immune defense because it activates the complement system via the lectin pathway. While the pig has been proposed to be an attractive source of xenotransplantable tissues and organs, little is known about porcine MBP. In our previous studies, phosphomannan, but not mannan, was found to be an effective inhibitor of the C1q-independent bactericidal activity of newborn piglet serum against some rough strains of Gram-negative bacteria. In contrast, the inhibitory activities of phosphomannan and mannan were very similar in the case of MBP-dependent bactericidal activity against rough strains of Escherichia coli K-12 and S-16. Based on these findings, we inferred that an MBP-like lectin with slightly or completely different carbohydrate binding specificity might exist in newborn piglet serum and be responsible for the C1q-independent bactericidal activity. Herein we report that a novel phosphomannan-binding lectin (PMBL) of 33 kDa under reducing conditions was isolated from both newborn and adult porcine serum and characterized. Porcine PMBL functionally activated the complement system via the lectin pathway triggered by binding with both phosphomannan (P-mannan) and mannan, which, unlike MBP, was effectively inhibited by mannose 6-phosphate- or galatose-containing oligosaccharides. Our observations suggest that porcine PMBL plays a critical role in the innate immune defense from the newborn stage to adult-hood, and the establishment of a newborn piglet experimental model for the innate immune system studies is a valuable step toward elucidation of the physiological function and molecular mechanism of lectin pathway.  相似文献   

20.
C-type lectins play important roles in the non-self innate immune system of invertebrates. In this study, we isolated the full-length cDNA of the C-type lectin like-domain (CTLD)-containing protein, designated PtLP, from the hepatopancreas of the swimming crab Portunus trituberculatus, one of the most common edible crabs of East Asia. The PtLP cDNA consists of 923bp and encodes a polypeptide of 164 amino acids containing a well-conserved C-type lectin like-domain (CTLD). The deduced amino acid sequence of PtLP shows 29-36% amino acid sequence identity to other crustacean C-type lectin sequences. A phylogenetic analysis revealed that PtLP is in a large cluster together with black tiger shrimp PmAV, a gene involved in virus resistance of shrimp, and all of the C-type lectins from the various shrimps. Quantitative RT-PCR analysis showed that the PtLP mRNA was expressed highly in hepatopancreas and moderately in gills, hemocytes, and ovary of normal swimming crabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号