首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hubbard x Hubbard chickens (Gallus gallus) growing from 7 to 28 days of age were fed 12 or 30% protein diets and then switched to the diets containing the opposite level of protein. Birds were killed on days 28, 29, 30 and 31. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME), isocitrate dehydrogenase (ICD) and aspartate aminotransferase (AAT) activities and the expression of the genes for ME, fatty acid synthase (FAS) and acetyl coenzyme carboxylase (ACC). Gene expression was determined with a combined RT-PCR using SYBR green as a fluorescent probe monitored in a real time mode. IVL and ME activity were inversely related to dietary protein levels (12 to 30%) and to acute changes in either level. In contrast, both ICD and AAT activities were increased by any increase in dietary protein. Lipogenic gene expression was inversely related to protein level, whether fed on an acute or chronic basis. It appears that real time RT-PCR is an acceptable method of estimating gene expression in birds. In addition, further work will focus on primer sizes that might further optimize RT-PCR as an instrument for studying the regulation of avian lipid metabolism. Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. However, it should be pointed out that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

2.
The purpose of this experiment was to determine the relationship between lipid metabolism and the expression of specific genes in chickens fed methimazole to produce hypothyroidism. Male, broiler chickens growing from 14 to 28 days of age were fed diets containing 18% crude protein and either 0 or 1 g methimazole per kg of diet. At 28 days, these two groups were further subdivided into groups receiving 18% crude protein diets containing either 0 or 1 mg triiodothyronine (T(3)) per kg. Birds were sampled at intervals from 0 to 120 h. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME), isocitrate dehydrogenase (ICD-NADP), aspartate aminotransferase (AAT) activities and the expression of the genes for ME, fatty acid synthase (FAS), NADP-ICD, AAT and acetyl coenzyme carboxylase (ACC). Gene expression was estimated with real time RT-PCR assays. Expression rates were noted as C(t)'s. Dietary methimazole decreased IVL and ME at 28 days of age. T(3) and supplementation for 1 day restored both IVL and ME. Paradoxically, continuing T(3) replenishment for a longer period decreased IVL without affecting ME activity. Although methimazole decreased ME gene expression, there was only a transitory relationship between enzyme activity and gene expression when plasma T(3) was replenished with exogenous T(3). These data explain the apparent dichotomies in lipid metabolism elicited by changes in the thyroid state of animals. Most metabolic changes in response to feeding T(3) occurred within a short period of time, suggesting that changes in intermediary metabolism preceded morphological changes. Furthermore, the thyroid state of the animal will determine responses to exogenous T(3).  相似文献   

3.
The purpose of this experiment was to determine the possible relationship between certain indices of lipid metabolism and specific gene expression in chickens fed methimazole to simulate hypothyroidism. Male broiler chickens (Gallus gallus) growing from 7 to 28 days of age were fed diets containing 18% crude protein and either 0 or 1 g methimazole per kilogram of diet. At 28 days, these two groups were further subdivided into groups receiving 18% crude protein diets containing either 0 or 1 mg triiodothyronine (T3) per kilogram. Birds were sampled at 28, 30, and 33 days. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME) activity, isocitrate dehydrogenase, aspartate amino transferase, and the expression of the genes for ME, fatty acid synthase (FAS), and acetyl coenzyme carboxylase (ACC). Hypothyroidism decreased IVL and ME at 28 days of age; however, T3 supplementation for 2 days restored both IVL and ME. Paradoxically, continuing T3 replenishment for an additional 3 days decreased IVL but did not decrease ME activity. In contrast, supplemental T3 decreased IVL in euthyroid birds, regardless of the dosing interval, but had no effect on ME activity. Although methimazole decreased ME gene expression, there was only a transitory relationship between enzyme activity and gene expression when plasma T3 was restored with exogenous T3. These data may help to explain some of the apparent reported dichotomies in lipid metabolism elicited by changes in the thyroid state of animals. In addition, most metabolic changes in response to feeding T3 occurred within 2 to 5 days, suggesting that changes in intermediary metabolism preceded morphological changes. In conclusion, the thyroid state of the animal will determine responses to exogenous T3.  相似文献   

4.
The purpose of this experiment was to determine the possible relationship between certain indices of lipid metabolism and specific gene expression in chickens fed graded levels of dietary crude protein. Male, broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 21 or 30% protein ad libitum. In addition, another group of birds was fed on a regimen consisting of a daily change in the dietary protein level (12 or 30%). This latter group was further subdivided such that one-half of the birds received each level of protein on alternating days. Birds were sampled from 28 to 30 days of age. Measurements taken included in vitro lipogenesis, malic enzyme activity the expression of the genes for malic enzyme, fatty acid synthase and acetyl coenzyme carboxylase. In vitro lipogenesis and malic enzyme activity were inversely related to dietary protein levels (12-30%) and to acute changes from 12 to 30%. In contrast, expression of malic enzyme, fatty acid synthase and acetyl CoA carboxylase genes were constant over a dietary protein range of 12-21%, but decreased by feeding a 30% protein diet (acute or chronic feeding). Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. It should be pointed out, however, that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

5.
The purpose of these experiments were to determine possible relationships between certain indices of lipid metabolism and specific gene expression in chickens fed graded levels of dietary crude protein. Male, broiler chickens growing from 7 to 28 days of age were fed diets containing 12 or 30% protein ad libitum. Both groups were then switched on day 28 to the diets containing the opposite level of protein. Birds were killed on day 28 (basal values prior to the switch) and at 12, 18 and 24 h post switch. Measurements taken included in vitro lipogenesis, malic enzyme activity the expression of the genes for malic enzyme, fatty acid synthase and acetyl coenzyme carboxylase. In vitro lipogenesis and malic enzyme activity were inversely related to dietary protein levels (12 to 30%) and to acute changes from 12 to 30%. Malic enzyme, fatty acid synthase and acetyl coenzyme A carboxylase genes were constant over a dietary protein range of 12 to 21% as in previous experiments, but decreased by feeding a 30% protein diet in the present experiments (acute or chronic feeding). Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. Metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

6.
This study investigated the effects of different levels of dietary L-arginine (L-Arg) supplementation on the abdominal fat pad, circulating lipids, hepatic fatty acid synthase (FAS) gene expression, gene expression related to fatty acid β-oxidation, and the performance of broiler chickens. We tested whether the dietary L-Arg levels affected the expression of genes related to lipid metabolism in order to reduce body fat deposition. A total of 192 broiler chickens (Cobb 500) aged 21 days with an average BW of 920 ± 15 g were randomly assigned to four groups (six broilers per replicate and eight replicates per treatment). The control group was fed a basal diet, whereas the treatment groups were fed basal diets supplemented with 0.25%, 0.50%, or 1.00% L-Arg for 3 weeks. The average daily feed intake, average daily gain and feed : gain ratio were not affected by the dietary L-Arg levels. However, chickens supplemented with L-Arg had lower abdominal fat content, plasma triglyceride (TG), total cholesterol (TC) concentrations, hepatic FAS mRNA expression and increased heart carnitine palmitoyl transferase1 (CPT1) and 3-hydroxyacyl-CoA dehydrogenase (3HADH) mRNA expression. These findings suggest that the addition of 0.25% L-Arg may reduce the plasma TC concentration by decreasing hepatic 3-hydroxyl-3-methylglutaryl-CoA reductase mRNA expression. This may lower the plasma TG and abdominal fat content by suppressing hepatic FAS mRNA expression and enhancing CPT1 and 3HADH (genes related to fatty acid β-oxidation) mRNA expression in the hearts of broiler chickens.  相似文献   

7.
The physiological mechanisms of thermogenesis, energy balance and energy expenditure are poorly understood in poultry. The aim of this study was designed to investigate the physiological roles of avian uncoupling protein (avUCP) regulating in energy balance and thermogenesis by using three chicken breeds of existence striking genetic difference and feeding with different dietary protein levels. Three chicken breeds including broilers, hybrid chickens, and non-selection Wuding chickens were used in this study. Total 150 chicks of 1 day of age, with 50 from each breed were reared under standard conditions on starter diets to 30 days. At 30 days of age, forty chicks from each breed chicks were divided into two groups. One group was fed low protein diet (LP, 17.0 %), and the other group was fed high protein diet (HP, 19.5 %) for 60 days. Wuding chickens showed the lowest feed conversion efficiency (FCE) and the highest expressions of avUCP mRNA association with high plasma T3 and insulin concentrations. Hybrid chickens showed the lowest expressions of avUCP mRNA association with high FCE and energy efficiency. Expressions of avUCP mRNA association with diet-induced thermogenesis (DIT) were only observed in broiler and hybrid chickens. The expressions of avUCP mRNA were positive association with plasma insulin, T3 and NEFA concentrations. Age influence on the expression of avUCP mRNA were observed only for hybrid and broiler chickens. It seems that both roles of avUCP regulation thermogenesis and lipid utilisation as fuel were observed in the present study response to variation in dietary protein and breeds.  相似文献   

8.
A 2 × 4 factorial experiment was conducted to determine the effects of dietary nutrient density on growth performance, small intestinal epithelial phosphate transporter expression, and bone mineralization of broiler chicks fed with diets with different nutrient densities and nonphytate phosphorus (NPP) levels. The broilers were fed with the same starter diets from 0 to 21 days of age. In the grower phase (day 22 to 42), the broilers were randomly divided into eight groups according to body weight. Relatively high dietary nutrient density (HDND) and low dietary nutrient density (LDND) diets were assigned metabolic energy (ME) values of 3,150 and 2,950 kcal/kg, respectively. Crude protein and essential amino acid levels were maintained in the same proportion as ME to prepare the two diet types. NPP levels were 0.25%, 0.30%, 0.35%, and 0.40% of the diets. Results showed that a HDND diet significantly increased the body weight gain (BWG) of broilers and significantly decreased the feed conversion ratio and NPP consumed per BWG. HDND significantly decreased tibial P content of the broilers. Conversely, mRNA expression of NaPi-IIb and protein expression of calbindin were significantly increased in the intestine of broilers fed a HDND diet. HDND also increased vitamin D receptor (VDR) expression, especially at a relatively low dietary NPP level (0.25%). The mRNA expression of NaPi-IIa in the kidneys was significantly increased at a relatively low dietary NPP level (0.25%) to maintain P balance. Tibial P, calcium, and ash content were significantly decreased, as were calbindin and VDR expression levels in the intestine at a low NPP level. Therefore, HDND improved the growth rate of broilers and increased the expression of phosphate and calcium transporter in the small intestine, but adversely affected bone mineralization.  相似文献   

9.
We determined the effect of dietary protein on the distribution of insulin-like growth factor (IGF) binding proteins in chicken plasma. Three groups of male broilers (n=6 per group) were fed (ad libitum) isocaloric diets containing 12, 21 or 30% dietary protein. Birds were fed respective diets beginning at 7 days of age and killed at 28 days. No differences were observed between adequate (21%) and high (30%) protein intakes for any of the parameters investigated (growth criteria, plasma levels of IGF-I, growth hormone or IGF-binding proteins). Feeding protein deficient diets (12%) resulted in a 34% decrease in body weight, 17% decrease in feed intake and a 39% increase in feed/gain ratio. IGF-binding proteins in plasma samples were separated by SDS-PAGE and transferred to nitrocellulose sheets. Nitrocellulose blots were probed with [125I]chicken IGF-II. Four regions of binding activity corresponding to 70, 43, 30 and 24 kDa were observed in all samples. Birds consuming 12% dietary group protein had less than 50% of the 43-kDa binding activity of birds consuming 21 or 30% dietary protein. The 30-kDa binding activity was 42% lower in the 12% dietary protein group compared to birds consuming adequate protein. In contrast, 70- and 24-kDa binding activities were not influenced by dietary protein. Chickens consuming 12% dietary protein had higher levels of growth hormone and lower levels of IGF-I than those consuming 21 or 30% dietary protein. These data indicate that in chickens, the circulating levels of at least two independent IGF-binding proteins are influenced by dietary protein.  相似文献   

10.
1. Ross male broiler chicks growing from 14 to 28 days of age were fed 14 and 20% protein diets (4 kcal day-1/body wt0.66) or 20 and 28% protein diets (2.8 kcal day-1/body wt0.66) in a 2 x 2 factorial arrangement to determine the effects of protein and energy intakes on in vitro lipogenesis (IVL) and net glucose production (NGP). Plasma concentrations of insulin, glucagon, thyroid hormones (T3 and T4) and somatomedin-C (Sm-C) were estimated by radioimmunoassay. 2. There was a significant (P less than 0.05) decrease in IVL in the chicks given the higher daily protein intake. 3. The higher protein intake increased (P less than 0.05) NGP while the lower energy intake decreased (P less than 0.05) NGP. 4. Insulin, both thyroid hormones and Sm-C were affected by dietary energy and protein intakes.  相似文献   

11.
The effects of corticosterone (CORT) administration on the development of muscular tissues of broiler chickens (Gallus gallus domesticus) fed with diets differing in lipid content were investigated. The experimental chickens were given one of two experimental diets: high lipid diet (9.9% crude fat) or control diet, from 21 d of age. At 28 d of age, half of the chickens in each dietary treatment were exposed to CORT treatment, supplemented with 30 mg CORT/kg diet for 12 days, while the other half continued to consume the former diet. The zootechnical parameters were recorded at 21, 28, 35 and 39 d, and a blood sample was obtained from 8 birds of each group, respectively. The growth performance of broiler chickens was significantly depressed by CORT administration, but not by dietary treatment. Corticosterone treatment resulted in enhanced energy expenditure. The results indicate that the development of breast muscle was more susceptible to stress mimicked by CORT administration. The results suggest that corticosterone administration enhanced hepatic fatty acid synthesis and resulted in the redistribution of energy to abdominal store from peripheral tissues. Diet rich in lipid content was favorable to the central fat deposit in stressed broiler chickens.  相似文献   

12.
Dietary soy protein isolate (SPI) reduces hepatic lipogenesis by suppressing gene expression of lipogenic enzymes, including acetyl-CoA carboxylase (ACC). In order to elucidate the mechanism of this regulation, the effect of dietary SPI on promoter (PI and PII) specific gene expression of ACC alpha was investigated. Rats were fed experimental diets containing SPI or casein as a nitrogen source. SPI feeding decreased the hepatic contents of total ACC mRNA as well as triglyceride (TG) content, but dietary SPI affected the amount of sterol-regulatory element binding protein (SREBP)-1 mRNA and protein very little. The amount of ACC mRNA transcribed from PII promoter containing SRE was not significantly affected by dietary protein, while a significant decrease in PI-generated ACC mRNA content was observed in rats fed the SPI diet. These data suggest that SPI feeding decreased the hepatic contents of ACC alpha mRNA mainly by regulating PI promoter via a nuclear factor(s) other than SREBP-1.  相似文献   

13.
The effect of feeding 0, 4, 8 and 16% rapeseed oil from 12-42 days of age was studied in broiler chickens on performance, digestibility of nutrients, and development of gastrointestinal tract, protein and energy metabolism. Thirty six female chickens (Ross 208) with initial body weight average 246 g were allocated to the four groups and kept pair-wise in metabolism cages. The chickens were fed similar amounts of metabolisable energy (ME) per day and similar amounts of essential amino acids relative to ME by adjusting with crystalline amino acids. The chickens were subjected to four balance periods each of five days with two 24 h measurements of gas exchange in two open-air-circuit respiration chambers inserted on the second and third day of each period. The addition of rapeseed oil increased the amount of gutfill indicating a reduced rate of passage and causing a hypertrophy of the gastrointestinal tract. There was a positive effect on feed utilisation as well as on digestibility especially of dietary fat together with higher utilisation of protein with addition of rapeseed oil. The partial fat digestibility of rapeseed oil estimated by regression was 91.1% and the partial metabolisability (ME/GE) of the rapeseed oil was estimated to 85% yielding an apparent metabolisable energy value of 34.30 MJ/kg.  相似文献   

14.
The effect of feeding 0, 4, 8 and 16% rapeseed oil from 12–42 days of age was studied in broiler chickens on performance, digestibility of nutrients, and development of gastrointestinal tract, protein and energy metabolism. Thirty six female chickens (Ross 208) with initial body weight average 246 g were allocated to the four groups and kept pair-wise in metabolism cages. The chickens were fed similar amounts of metabolisable energy (ME) per day and similar amounts of essential amino acids relative to ME by adjusting with crystalline amino acids. The chickens were subjected to four balance periods each of five days with two 24 h measurements of gas exchange in two open-air-circuit respiration chambers inserted on the second and third day of each period. The addition of rapeseed oil increased the amount of gutfill indicating a reduced rate of passage and causing a hypertrophy of the gastrointestinal tract. There was a positive effect on feed utilisation as well as on digestibility especially of dietary fat together with higher utilisation of protein with addition of rapeseed oil. The partial fat digestibility of rapeseed oil estimated by regression was 91.1% and the partial metabolisability (ME/GE) of the rapeseed oil was estimated to 85% yielding an apparent metabolisable energy value of 34.30 MJ/kg.  相似文献   

15.
16.
Cerulenin, a natural fatty acid synthase (FAS) inhibitor, and its synthetic analog C75 are hypothesized to alter the metabolism of neurons in the hypothalamus that regulate ingestive behavior to cause a profound decrease of food intake and an increase in metabolic rate, leading to body weight loss. The bulk of data exclusively originates from mammals (rodents); however, such effects are currently lacking in nonmammalian species. We have, therefore, addressed this issue in broiler chickens because this species is selected for high growth rate and high food intake and is prone to obesity. First, we demonstrate that FAS messenger and protein are expressed in the hypothalamus of chickens. FAS immunoreactivity was detected in a number of brain regions, including the nucleus paraventricularis magnocellularis and the nucleus infundibuli hypothalami, the avian equivalent of the mammalian arcuate nucleus, suggesting that FAS may be involved in the regulation of food intake. Second, we show that hypothalamic FAS gene expression was significantly (P < 0.05) decreased by overnight fasting similar to that in liver, indicating that hypothalamic FAS gene is regulated by energy status in chickens. Finally, to investigate the physiological consequences of in vivo inhibition of fatty acid synthesis on food intake, we administered cerulenin by intravenous injections (15 mg/kg) to 2-wk-old broiler chickens. Cerulenin administration significantly reduced food intake by 23 to 34% (P < 0.05 to P < 0.0001) and downregulated FAS and melanocortin receptors 1, 4, and 5 gene expression (P < 0.05). However, the known orexigenic (neuropeptide Y, agouti gene-related peptide, orexin, and orexin receptor) and anorexigenic (pro-opiomelanocortin and corticotropin-releasing hormone) neuropeptide mRNA levels remained unchanged after cerulenin treatment. These results suggest that the catabolic effect of cerulenin in chickens may be mediated through the melanocortin system rather than the other neuropeptides known to be involved in food intake regulation.  相似文献   

17.
1. We studied the effects of calorie-restricted, constant-protein and calorie-restricted, protein-restricted diets on growth and in vitro metabolism of male chickens from select (Cobb Line 500) and byproduct (Cobb female line) lines of broiler chickens. 2. Chickens consumed 40, 60, 80 or 100% of a prescribed formula for dietary energy (body weight in g0.70 x 16.7 kJ) in the presence of set (CEP) or varied dietary protein (VEP). 3. Chickens fed VEP were heavier (P less than 0.05) at all energy intakes than chickens fed CEP. Slope analysis of data for in vitro lipogenesis showed a significant difference between the two treatment series. 4. Plasma growth hormone was inversely related (P less than 0.05) to Sm-C. Growth hormone levels were greater in chickens on a low plane of energy nutrition (40%) than on the maximum plane (100%). 5. Plasma Sm-C levels (pooled across energy series) were greater in the select than in the byproduct line. There were no differences in plasma T3 between the two lines. There was a significant increase (P less than 0.05) in T3 and a decrease in the T4/T3 ratio accompanying an increase in dietary energy. 6. Restricting dietary carbohydrate and protein compromises anabolic processes more than restricting carbohydrate alone.  相似文献   

18.
Feed form is well recognized to improve broiler performance, specially by increasing feed intake (FI). However, when different diet energy levels are used, the results differ in the literature. Therefore, this experiment was conducted to evaluate the influence of feed form and dietary metabolizable energy (ME) levels on broiler performance, carcass yield and on the digestibility of DM, CP, starch and gross energy. In total, 1152 male Cobb 500 broilers were evaluated between 35 and 47 days. The birds were distributed according to a completely randomized design in a 2 × 4 factorial arrangement, consisting of two feed forms (mash or pellet) and four ME levels (12.73, 13.06, 13.40 or 13.73 MJ/kg), totaling eight treatments with eight replicates of 18 birds. Broilers fed the lowest ME level presented the lowest weight gain (WG) and worst feed per unit gain (P < 0.01). Metabolizable energy intake increased (P < 0.01) with progressive increments of ME, which, however, did not affect caloric conversion (CC, P > 0.05). Pelleted diets promoted higher FI, WG, ME intake (P < 0.01) and better feed per unit gain and CC (P < 0.05) compared with mash. In mash diets, increasing dietary ME levels promoted a linear increase in WG (P < 0.01) and reduced feed per unit gain (P ≤ 0.05), but did not affect FI (P > 0.05). In pelleted diets, on the other hand, increasing ME levels linearly reduced FI (P < 0.05) and feed per unit gain (P < 0.01). Broilers fed pelleted diets presented higher abdominal fat deposition than those fed mash (P < 0.05). Increasing ME levels reduced the coefficients of ileal apparent digestibility of DM (P < 0.01) and total starch (P < 0.05) but did not affect the digestibility of other evaluated nutrients. The digestibility of all nutrients was lower when pelleted diets were fed compared with mash. Increasing inert material inclusion in the diets at the expense of soybean oil to reduce dietary ME levels promoted higher pellet durability index values (P < 0.05) and the percentage of fines (P < 0.01). Overall, the results suggest that pelleted diets promote better broiler performance because they increase FI, since the digestibility of dietary fractions is reduced. Chickens consuming low-energy pelleted diets may increase FI to compensate for energy deficit. In contrast, broilers fed mash diets may have reached their maximum intake capacity and did not regulate FI by changing feed energy density. When feeding pelleted diets, dietary energy reduction should be considered to reduce feed costs and to improve the carcass quality of broilers.  相似文献   

19.
Feeding broiler chickens on diets based on cereal grains of high non-starch polysaccharides content such as wheat and barley can negatively impact their performance and gut health. Plant extracts can be used as a potential tool to alleviate these negative effects. The present study assessed the effects of dietary cereal type and the inclusion of a plant extract blend (PEB) on the growth performance, intestinal histomorphology, caecal microflora, and gene expression of selected biomarkers for gut integrity in broiler chickens in a 42-d experiment. Ross-308 male broilers were assigned into different dietary treatments and fed on two cereal types (corn- vs. wheat/barley-based) with/without added graded concentrations of a PEB (0, 250, 500, 1000, and 2000 mg/kg diet). There were no significant differences in the growth performance parameters, intestinal histomorphology, and caecal microflora due to the impact of dietary cereal type. However, lactobacilli count in the caecal microflora was increased in the group fed on a corn-based diet. The PEB supplementation especially at a level of 500 to 1000 mg/kg diet significantly increased the average BW and decreased the feed conversion ratio. It also increased the villi length of duodenum, jejunum, and ileum, decreased the duodenal crypt depth, and increased the villi length to crypt depth ratio in the duodenum, jejunum and ileum. Supplementation of the PEB decreased the total bacterial and coliform count and increased the lactobacilli count in a linear pattern. Gene expression of Occludin and Junction Adhesion Molecule was significantly increased in the PEB supplemented diets, whereby no influence was observed on mucin expression. In conclusion, supplementation of a PEB at levels of 500–1000 mg/kg can be used as a tool to improve broiler performance and gut health.  相似文献   

20.
The effects of different combinations of dietary methionine+cystine (Met+Cys) and dietary crude protein (CP) in finishing broilers were investigated in two growth studies. In Exp. 1, male broilers 29 to 42 days of age were fed 18 diets containing 16.9%, 18.7%, or 20.4% CP with six levels of Met+Cys within each protein level. Similarly, in Exp. 2 another 12 diets containing either 18.0 or 21.5% CP were fed to male broilers 29 to 48 days of age.

In general, the Met+Cys requirement for optimum feed conversion was higher than for maximum growth. In both experiments, between 0.80% and 0.85% methionine+cystine optimized feed conversion. These dietary levels were valid for a 13.05 MJ ME/kg diet fed to broilers growing from 1.2 kg to 2.2 kg (Exp. 1), or for a 13.60 MJ ME/kg diet fed to broilers growing from 1.3 kg to 3.0 kg (Exp. 2).

The Met+Cys requirement was not consistently affected by the dietary CP content in Exp. 1. In Exp. 2, increasing dietary CP from 18.0% to 21.5% tended to increase the Met+Cys requirement for optimum feed conversion.

A dietary CP level of 18.0% to 18.7% supported performance and carcass fat deposition equal to diets containing 20.4% or 21.5% CP, respectively, when the sulfur amino acid content was adequate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号