首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study aimed to develop an optimal continuous procedure of lipase-catalyzes transesterification of waste cooking palm oil in a packed bed reactor to investigate the possibility of large scale production further. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was used to optimize the two important reaction variables packed bed height (cm) and substrate flow rate(ml/min) for the transesterification of waste cooking palm oil in a continuous packed bed reactor. The optimum condition for the transesterification of waste cooking palm oil was as follows: 10.53 cm packed bed height and 0.57 ml/min substrate flow rate. The optimum predicted fatty acid methyl ester (FAME) yield was 80.3% and the actual value was 79%. The above results shows that the RSM study based on CCRD is adaptable for FAME yield studied for the current transesterification system. The effect of mass transfer in the packed bed reactor has also been studied. Models for FAME yield have been developed for cases of reaction control and mass transfer control. The results showed very good agreement compatibility between mass transfer model and the experimental results obtained from immobilized lipase packed bed reactor operation, showing that in this case the FAME yield was mass transfer controlled.  相似文献   

2.
Summary The respective roles of organic solvent and of water in butyl butyrate synthesis from n-butanol and n-butyric acid in n-hexane by Mucor miehei lipase have been investigated by analysis of the kinetics and the reaction balances. Esterificaton was found to take place in both low water systems containing solid enzyme in hexane and in biphasic aqueous enzyme solution/hexane systems. In the solid enzyme system, the enzyme adsorbed the water produced, thus delaying the appearance of a discrete aqueous phase. As expected, the presence of some water was indispensable for this system, as its removal or exclusion by various means (adsorption, distillation) affected enzyme activity. However, water removal had little effect on the final yield of esterification. Reaction velocities were quite similar for the solid enzyme/hexane system and for the biphasic aqueous enzyme solution/hexane system. In the latter case, the butyl butyrate formed was almost exclusively found in the organic phase. Ethyl butyrate, a more polar compound, was synthesized with a lower yield. These results allow the conclusion that the reaction took place in a phase consisting of either solid hydrated enzyme with no discrete aqueous phase or of an aqueous enzyme solution by basically similar mechanisms according to the amount of water available to the system, the esterification being driven to completion by transfer of the ester into the organic phase because of a favourable partition coefficient.Offprint requests to: F. Monot  相似文献   

3.
The enzymatic synthesis of a mixture of unsaturated fatty acid alpha-butylglucoside esters, containing more than 60% alpha-butylglucoside linoleate, was achieved through lipase-catalyzed esterification. The continuous evaporation under reduced pressure of the water produced enabled substrate conversions greater than 95% to be reached. Two immobilized lipases from Candida antarctica (Chirazyme L2, c.-f., C2) and Rhizomucor miehei (Chirazyme L9, c.-f.) were compared in stirred batch and packed bed configurations. When the synthesis was carried out in stirred batch mode, C. antarctica lipase appeared to be of greater interest than the R. miehei enzyme in terms of stability and regioselectivity. Surprisingly, a change in the process design to a packed bed configuration enabled the stability of R. miehei lipase to be significantly improved, while the C. antarctica lipase efficiency to synthesize unsaturated fatty acid alpha-butylglucoside esters was slightly decreased. Water content in the microenvironment of the biocatalyst was assumed to be responsible for such changes. When the process is run in stirred batch mode, the conditions used promote the evaporation of the essential water surrounding the enzyme, which probably leads to R. miehei lipase dehydration. In contrast, the packed bed design enabled such water evaporation in the microenvironment of the biocatalyt to be avoided, which resulted in a tremendous improvement of R. miehei lipase stability. However, C. antarctica lipase led to the formation of 3% diesters, whereas the final percentage of diesters reached 21% when R. miehei enzyme was used as biocatalyst. A low content of diesters is of greater interest in terms of alpha-butylglucoside linoleate application as linoleic acid carrier, and therefore the enzyme choice will have to be made depending on the properties expected for the final product.  相似文献   

4.
Packed bed hollow fiber membrane reactors were used to carry out organic phase biocatalysis at constant water activity. The performance of the device was tested by carrying out the esterification of dodecanol and decanoic acid in hexane. Lipase from Candida rugosa, immobilized on microporous polypropylene and packed in the shell space of the reactor, was used to catalyze the reaction. In situ water activity control was accomplished by pumping appropriate saturated salt solutions through the microporous hollow fiber polypropylene membranes. Water generated by reaction in the organic phase, pumped continuously through the shell of the reactor, was transferred into the bulk of the aqueous phase under the water activity gradient. The reactor performance was found to be strongly dependent on the controlling water activity. By carefully selecting this control activity it was found possible to obtain complete esterification. The water activity of the organic phase could be maintained very close to that of the saturated salt solution used. The reactor could be operated in the continuous mode for 100 h without any degradation in its performance. (c) 1996 John Wiley & Sons, Inc.  相似文献   

5.
6.
Azo dyes are recalcitrant and xenobiotic nature makes these compounds a challenging task for continuous biodegradation up to satisfactorily levels in large-scale. In the present report, the biodegradation efficiency of alginate immobilized indigenous Aeromonas sp. MNK1 on Methyl Orange (MO) in a packed bed reactor was explored. The experimental results were used to determine the external mass transfer model. Complete MO degradation and COD removal were observed at 0.20 cm bead size and 120 ml/h flow rate at 300 mg/l of initial dye concentration. The degradation of MO decreased with increasing bead sizes and flow rates, which may be attributed to the decrease in surface of the beads and higher flux of MO, respectively. The experimental rate constants (k ps) for various beads sizes and flow rates were calculated and compared with theoretically obtained rate constants using external film diffusion models. From the experimental data, the external mass transfer effect was correlated with a model J D = K Re ?(1 ? n). The model was tested with K value (5.7) and the Colburn factor correlation model for 0.20, 0.40 and 0.60 bead sizes were J D = 5.7 Re ?0.15, J D = 5.7 Re ?0.36 and J D = 5.7 Re ?0.48, respectively. Based on the results, the Colburn factor correlation models were found to predict the experimental data accurately. The proposed model was constructive to design and direct industrial applications in packed bed reactors within acceptable limits.  相似文献   

7.
Optically active (R)-alpha-monobenzoyl glycerol (MBG) was synthesized by Candida antarctica lipase B (CHIRAZYME L-2) catalyzed asymmetric esterification of glycerol with benzoic anhydride in organic solvents. Various conditions, such as the type and composition of the organic solvent, water content of the system, reaction temperature, and concentrations of the substrates were systematically examined and optimized in screw-capped test tubes with respect to both the reaction rate and the enzyme selectivity. 1,4-Dioxane was found to be the best solvent and no additional water was needed for the system. The optimum temperature was around 30 degrees C, while the most suitable substrate concentrations were 100 mM each for glycerol and benzoic anhydride, respectively. However, when excessive anhydride (e.g., 200 mM) was used, the produced MBG could be further transformed into 1,3-dibenzoyl glycerol (DBG) by the same enzyme with a priority to (S)-MBG, resulting in a significant improvement of the product optical purity from ca. 50-70% e.e. Under optimal conditions (100 mM glycerol, 100-200 mM benzoic anhydride, dioxane, 25-30 degrees C), the enzymatic synthesis of (R)-MBG was successfully operated in a packed-bed reactor for about 1 week, with an average productivity of 0.79 g MBG/day/g biocatalyst in the case of continuous operation and 0.94 g MBG/day/g biocatalyst in the case of semicontinuous operation. After refinement and preferential crystallization of the crude product, (R)-MBG could be obtained in an almost optically pure form (>98% e.e.).  相似文献   

8.
9.
A water removal system with in situ monitoring of the reaction medium turbidity was used to investigate the effect of water content on reactor performance and enzyme agglomeration. The performance of the system was tested by carrying out the lipase-catalyzed esterification of caprylic acid and n-butanol in cyclohexane. Enzyme agglomeration strongly depended on the water content in the solvent medium. By preventing agglomeration, the reactor could be operated in a continuous mode for 150 h without any loss of enzyme reactivity, whereas insufficient water stripping resulted in a gradual decrease of the conversion due to agglomeration of enzyme.  相似文献   

10.
Using lipase catalysed, enzymatic esterification as a model reaction, we successfully demonstrate the use of miniaturized technology for biocatalytic reactions. Benchmarked against batch reactions, nine alkyl esters have been synthesized effectively, using Novozyme 435 in a pressure driven, packed-bed, miniaturized, continuous flow reactor. In some cases close to 100% ester conversions were obtained. The paper also demonstrates the ability to screen the enzyme for substrate specificity.  相似文献   

11.
This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed‐bed continuous reactor, using mixtures of immobilized lipases (combi‐lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions was studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi‐lipase composition: 40% of TLL, 35% of CALB, and 25% of RML) and soybean oil (combi‐lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert‐butanol as solvent, and the flow rate of 0.08 mL min?1. The combi‐lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of ~50%, with average productivity of 1.94 gethyl esters h?1, regardless of the type of oil in use. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:952–959, 2018  相似文献   

12.
Summary A graphical method of determining the Michaelis-Menten constant free of the external mass transfer resistance for a packed bed immobilized enzyme system was illustrated with examples from 3 different enzyme reactions. The intercept at the ordinate obtained by the straight line extrapolation of data points in the plot of apparent Km value vs. the reciprocal of superficial velocity in column allowed an easy calculation of Km free of external mass transfer resistance. An asymptotic value of apparent Km value at infinite zero superficial velocity was ascribed to the fact that the mass transfer coefficient kL, approached a definite value at this condition.Nomenclature Km Michaelis-Menten constant, M/L3 - Km' Km free of external mass transfer resistance in a given ionic strength, M/L3 - Km" apparent Km with external mass transfer resistance, M/L3 - S substrate concentration, M/L3 - So initial substrate concentration, M/L3 - k2 rate constant, t-1 - E enzyme concentration in support, M/L3 - void volume per unit volume of reactor, dimensionless - u superficial velocity of substrate, L/t - KL mass transfer coefficient in liquid film, L/t - a external surface area of support per unit volume of reactor, L-1 - ratio of average channeling length to particle diameter, dimensionless - dp diameter of support particle, L - X fractional conversion of substrate, dimensionless - H partition coefficient, dimensionless - k a constant, 3 k2E(1-)dp/4 - T space time, t - N molecular flux, M/L2t - r radius of immobilized enzyme particle, L  相似文献   

13.
A partially purified and lyophilized preparation of (+)-alpha-pinene cyclase from sage (Salvia officinalis) was shown to convert geranyl pyrophosphate to the monoterpene olefins alpha-pinene, camphene, limonene, and myrcene, in hexane with the addition of 0.1 to 10% water. This constitutes the first report of catalysis by a terpene cyclase in "non-aqueous" media. The relative proportions of olefinic products, metal ion requirement, pH optimum, temperature response, and time course of the enzymatic conversion were determined. The cyclase was shown to be stabilized with respect to temperature and time by the use of hydrocarbon solvent, and, in all other characteristics, to exhibit properties closely resembling those observed in aqueous media.  相似文献   

14.
Peptide synthesis was carried out in a variety of organic solvents with low contents of water. The enzyme was deposited on the support material, celite, from an aqueous buffer solution. After evaporation of the water the biocatalyst was suspended in the reaction mixtures. The chymotrypsin-catalyzed reaction between Z-Phe-OMe and Leu-NH2 was used as a model reaction. Under the conditions used ([Z-Phe-OMe]0 less than or equal to 40 mM, [Leu-NH2]0/([Z-Phe-OMe]0 = 1.5) the reaction was first order with respect to Z-Phe-OMe. Tris buffer, pH 7.8, was the best buffer to use in the preparation of the biocatalyst. In water-miscible solvents the reaction rate increased with increasing water content, but the final yield of peptide decreased due to the competing hydrolysis of Z-Phe-OMe. Among the water-miscible solvents, acetonitrile was the most suitable, giving 91% yield with 4% (by vol.) water. In water-immiscible solvents the reaction rate and the product distribution were little affected by water additions in the range between 0% and 2% (vol. %) in excess of water saturation. The reaction rates correlated well with the log P values of the solvent. The highest yield (93%) was obtained in ethyl acetate; in this solvent the reaction was also fast. Under most reaction conditions used the reaction product was stable; secondary hydrolysis of the peptide formed was normally negligible. The method presented is a combination of kinetically controlled peptide synthesis (giving high reaction rates) and thermodynamically controlled peptide synthesis (giving stable reaction products).  相似文献   

15.
Summary A mathematical model has been developed to describe the operation of a packed bed reactor for the continuous production of solvents from whey permeate. The model has been used to quantitate the amounts of different physiological/ morphological types of biomass present in the reactor. The majority of biomass is inert, i.e. it neither grows nor produces solvent. Only relatively small amounts of biomass actively grow (vegetative, non-solvent-producing cells), while even smaller amounts are responsible for solvent production (clostridial, solvent-producing cells).  相似文献   

16.
Using a successive transfer method on mineral salt medium containing simazine, a microbial community enriched with microorganisms able to grow on simazine was obtained. Afterwards, using a continuous enrichment culture procedure, a bacterial community able to degrade simazine from an herbicide formulation was isolated from a chemostat. The continuous selector, fed with a mineral salt medium containing simazine and adjuvants present in the commercial herbicide formulation, was maintained in operation for 42 days. Following the lapse of this time, the cell count increased from 5 x 10(5) to 3 x 10(8) CFU mL(-1), and the simazine removal efficiency reached 96%. The chemostat's bacterial diversity was periodically evaluated by extracting the culture's bacterial DNA, amplifying their 16S rDNA fragments and analyzing them by thermal gradient gel electrophoresis. Finally, a stable bacterial consortium able to degrade simazine was selected. By PCR amplification, sequencing of bacterial 16S rDNA amplicons, and comparison with known sequences of 16S rDNA from the NCBI GenBank, eight bacterial strains were identified. The genera, Ochrobactrum, Mycobacterium, Cellulomonas, Arthrobacter, Microbacterium, Rhizobium and Pseudomonas have been reported as common degraders of triazinic herbicides. On the contrary, we were unable to find reports about the ability of the genus Pseudonocardia to degrade triazinic compounds. The selected bacterial community was attached to a porous support in a concurrently aerated four-stage packed-bed reactor fed with the herbicide. Highest overall simazine removal efficiencies eta (SZ) were obtained at overall dilution rates D below 0.284 h(-1). However, the multistage packed bed reactor could be operated at dilution rates as high as D = 3.58 h(-1) with overall simazine removal volumetric rates R (v,SZ) = 19.6 mg L(-1) h(-1), and overall simazine removal specific rates R (X,SZ) = 13.48 mg (mg cell protein)(-1) h(-1). Finally, the consortium's ability to degrade 2-chloro-4,6-diamino-1,3,5-triazine (CAAT), cyanuric acid and the herbicide atrazine, pure or mixed with simazine, was evaluated in fed batch processes.  相似文献   

17.
The present paper demonstrates application of biocatalysis to the synthesis of n-butyl palmitate, a cosmetic emollient ester in a solvent-free system (SFS). Fermase CALB?10000, a commercial Candida antarctica lipase B was used to accomplish the synthesis. In order to evaluate the effect of various process parameters on the synthesis, one factor at a time methodology (OFAT) and response surface methodology (RSM) complimented with central composite design (CCD) were employed. On the basis of the results obtained in one factor at one time studies, temperature, enzyme dose, and molar ratio were chosen as significant parameters and their range was selected for RSM study. The optimized factors suggested by RSM model were, temperature –60.12?°C, enzyme dose –5% w/w, and alcohol: acid ratio –2.25:1. Under these optimized factors, the experimental conversion observed was 91.25% which was in close agreement to the model predicted conversion of 92% and the enzymes were reusable up to four cycles. A separate study was carried out in order to study the effect of palmitic acid on n-butyl palmitate synthesis and to understand the kinetic profile of n-butyl palmitate synthesis reaction. Ordered bi-bi model showed a good experimental fit to the kinetic data.  相似文献   

18.
Nucleophile specificity of subtilisin (subtilopeptidase A) was studied via acyl transfer reactions in acetonitrile containing piperidine and 10 vol% of water. Ac-Tyr-OEt was used as acyl donor and a series of amino acid derivatives, di- and tripeptides of the general structure Xaa-Gly, Gly-Xaa, Gly-Gly-Xaa (Xaa represents all natural L-amino acids except cysteine) were used as nucleophiles. The nucleophilic efficiencies of these peptides were characterized by the values of the apparent partition constants, p(app), determined from the HPLC analysis of the reactions. The order of preference for the P'(1) position was estimated to be: Gly > hydrophilic, positively charged > hydrophobic, aromatic > negatively charged > Leu > Pro side chain. For the P'(2) position the order of preference was: Gly > hydrophilic, charged > hydrophobic, aromatic > Pro side chain. The values of p(app) for Gly-Gly-Xaa tripeptides cover a range of only two orders of magnitude, with lower nucleophile efficiency for those with hydrophobic amino acid residues in the P'(3) position. The dipeptide with Pro in P'(1) did not react at all, but a tripeptide having Pro in P'(3) was a very good nucleophile. The negatively charged amino acid residues in the P'(1) position result in very weak nucleophilic behavior, whereas the peptides with Asp or Glu in P'(2) and P'(3) are well accepted. Generally, peptides of the Gly-Xaa or Gly-Gly-Xaa series were better nucleophiles than peptides of the Xaa-Gly series. The length of the peptide chain or amidation of alpha-carboxyl function had no influence on nucleophilic behavior. No significant difference in nucleophile specificity between subtilopeptidase A and nagarse was observed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
Structured triacylglycerols (ST) enriched in eicosapentaenoic acid (EPA) in position 2 of the triacylglycerol (TAG) backbone were synthesized by acidolysis of a commercially available EPA-rich oil (EPAX4510, 40% EPA) and caprylic acid (CA), catalyzed by the 1,3-specific immobilized lipase Lipozyme IM. The reaction was carried out in a packed bed reactor (PBR) operating in two ways: (1) by recirculating the reaction mixture from the exit of the bed to the substrate reservoir (discontinuous mode) and (2) in continuous mode, directing the product mixture leaving the PBR to a product reservoir. By operating in these two ways and using a simple kinetic model, representative values for the apparent kinetic constants (kX) for each fatty acid (native, Li or odd, M) were obtained. The kinetic model assumes that the rate of incorporation of a fatty acid into TAG per amount of enzyme, rX (mole/(h g lipase)) is proportional to the extent of the deviation from the equilibrium for each fatty acid (i.e., the difference of concentration between the fatty acid in the triacylglycerol and the concentration of the same fatty acid in the triacylglycerol once the equilibrium of the acidolysis reaction is reached). The model allows comparing the two operating modes through the processing intensity, defined as mLt/(V[TG]0) and mL/(q[TG]0), for the discontinuous and continuous operation modes, respectively. In discontinuous mode, ST with 59.5% CA and 9.6% EPA were obtained. In contrast, a ST with 51% CA and 19.6% EPA were obtained when using the continuous operation mode. To enhance the CA incorporation when operating in continuous mode, a two-step acidolysis reaction was performed (third operation mode). This continuous two-step process yields a ST with a 64% CA and a 15% EPA. Finally, after purifying the above ST in a preparative silica gel column, impregnated with boric acid, a ST with 66.9% CA and 19.6% EPA was obtained. The analysis by reverse phase and Ag+ liquid chromatography of the EPA-enriched ST demonstrated that the CA was placed in positions 1 and 3 and the EPA was occupying position 2 of the final ST.  相似文献   

20.
An asymmetric hydrogen-transfer biocatalyst consisting of mutated Rhodococcus phenylacetaldehyde reductase (PAR) or Leifsonia alcohol dehydrogenase (LSADH) was applied for some water-soluble ketone substrates. Among them, 4-hydroxy-2-butanone was reduced to (S)/(R)-1,3-butanediol, a useful intermediate for pharmaceuticals, with a high yield and stereoselectivity. Intact Escherichia coli cells overexpressing mutated PAR (Sar268) or LSADH were directly immobilized with polyethyleneimine or 1,6-diaminehexane and glutaraldehyde and evaluated in a batch reaction. This system produced (S)-1,3-butanediol [87% enantiomeric excess (e.e.)] with a space time yield (STY) of 12.5 mg h−1 ml−1 catalyst or (R)-1,3-butanediol (99% e.e.) with an STY of 60.3 mg h−1 ml−1 catalyst, respectively. The immobilized cells in a packed bed reactor continuously produced (R)-1,3-butanediol with a yield of 99% (about 49.5 g/l) from 5% (w/v) 4-hydroxy-2-butanoate over 500 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号