首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work provides direct evidence that sustained tensile stress exists in white matter of the mature mouse brain. This finding has important implications for the mechanisms of brain development, as tension in neural axons has been hypothesized to drive cortical folding in the human brain. In addition, knowledge of residual stress is required to fully understand the mechanisms behind traumatic brain injury and changes in mechanical properties due to aging and disease. To estimate residual stress in the brain, we performed serial dissection experiments on 500-mum thick coronal slices from fresh adult mouse brains and developed finite element models for these experiments. Radial cuts were made either into cortical gray matter, or through the cortex and the underlying white matter tract composed of parallel neural axons. Cuts into cortical gray matter did not open, but cuts through both layers consistently opened at the point where the cut crossed the white matter. We infer that the cerebral white matter is under considerable tension in the circumferential direction in the coronal cerebral plane, parallel to most of the neural fibers, while the cerebral cortical gray matter is in compression. The models show that the observed deformation after cutting can be caused by more growth in the gray matter than in the white matter, with the estimated tensile stress in the white matter being on the order of 100–1,000 Pa.  相似文献   

2.
A quantitative neuropathological necropsy study of 22 control and 22 chronic alcoholic subjects showed a statistically significant loss of brain tissue in the chronic alcoholic group. The loss of tissue appeared to be from the white matter of the cerebral hemispheres rather than the cerebral cortex. This may reflect a primary alteration in the composition or structure of the white matter or it may be secondary to loss of nerve cells from the cortex with subsequent degeneration of the axons in the white matter. Further morphometric analyses including cortical neuronal counts will be necessary to clarify this issue.  相似文献   

3.
J J Chun  C J Shatz 《Neuron》1988,1(4):297-310
To examine the distribution of synaptic vesicle antigens during development of the cerebral cortex, antibodies against synapsin I and p65 were used on sections of cat cerebral cortex between E40 and adulthood. In the adult, the layers of the cerebral cortex are immunoreactive for each of these antigens, while the white matter is free of staining. In contrast, the fetal and neonatal pattern of immunostaining is reversed: the cortical plate (future cortical layers) is devoid of immunoreactivity, while the marginal (future layer 1) and the intermediate zones (future white matter) are stained. Electron microscopic immunohistochemistry shows that immunolabeling is associated with presynaptic nerve terminals in the adult and during development. These observations suggest that during development the white matter is a transient synaptic neuropil and that a global redistribution of synapses takes place as the mature pattern of connections within the cerebral cortex emerges.  相似文献   

4.
We describe a protocol for establishing mouse models of periventricular leukomalacia (PVL). PVL is the predominant form of brain injury in premature infants and the most common antecedent of cerebral palsy. PVL is characterized by periventricular white matter damage with prominent oligodendroglial injury. Hypoxia/ischemia with or without systemic infection/inflammation are the primary causes of PVL. We use P6 mice to create models of neonatal brain injury by the induction of hypoxia/ischemia with or without systemic infection/inflammation with unilateral carotid ligation followed by exposure to hypoxia with or without injection of the endotoxin lipopolysaccharide (LPS). Immunohistochemistry of myelin basic protein (MBP) or O1 and electron microscopic examination show prominent myelin loss in cerebral white matter with additional damage to the hippocampus and thalamus. Establishment of mouse models of PVL will greatly facilitate the study of disease pathogenesis using available transgenic mouse strains, conduction of drug trials in a relatively high throughput manner to identify candidate therapeutic agents, and testing of stem cell transplantation using immunodeficiency mouse strains.  相似文献   

5.
血管性痴呆(vascular dementia,VD)是指由各种脑血管病,包括缺血性脑血管病、出血性脑血管病及急性与慢性缺氧性脑血管病引起的脑功能障碍,进而产生认知功能障碍的临床综合征。血管性痴呆是一种慢性进行性疾病,被认为是仅次于阿尔兹海默症,导致痴呆的第2位原因。目前,血管性痴呆的发病机制尚不明确,有可能与炎症、神经元损伤、胆碱能系统功能障碍、脑白质病变及氧化应激等有关。其中,炎症反应在急性与慢性脑缺血继发性脑损伤中起主要作用。抑制炎症能改善血管性痴呆动物模型的症状,显示炎症可能在血管性痴呆发病机制中发挥重要作用。参与炎症反应的相关因子,如细胞因子等可对中枢神经系统造成损伤。同时,炎症相关因子会触发炎症级联反应,加重脑损伤。本文总结了有关炎症相关因子参与导致血管性痴呆的各种病理损害和促进其发生发展的分子机制的最新研究进展,这些都有助于了解炎症相关因子在血管性痴呆发病机制中的作用。  相似文献   

6.
Cerebral palsy due to perinatal injury to cerebral white matter is usually not caused by genetic mutations, but by ischemia and/or inflammation. Here, we describe an autosomal-recessive type of tetraplegic cerebral palsy with mental retardation, reduction of cerebral white matter, and atrophy of the cerebellum in an inbred sibship. The phenotype was recorded and evolution followed for over 20 years. Brain lesions were studied by diffusion tensor MR tractography.Homozygosity mapping with SNPs was performed for identification of the chromosomal locus for the disease. In the 14 Mb candidate region on chromosome 7q22, RNA expression profiling was used for selecting among the 203 genes in the area. In postmortem brain tissue available from one patient, histology and immunohistochemistry were performed. Disease course and imaging were mostly reminiscent of hypoxic-ischemic tetraplegic cerebral palsy, with neuroaxonal degeneration and white matter loss. In all five patients, a donor splice site pathogenic mutation in intron 14 of the AP4M1 gene (c.1137+1G→T), was identified. AP4M1, encoding for the μ subunit of the adaptor protein complex-4, is involved in intracellular trafficking of glutamate receptors. Aberrant GluRδ2 glutamate receptor localization and dendritic spine morphology were observed in the postmortem brain specimen. This disease entity, which we refer to as congenital spastic tetraplegia (CST), is therefore a genetic model for congenital cerebral palsy with evidence for neuroaxonal damage and glutamate receptor abnormality, mimicking perinatally acquired hypoxic-ischemic white matter injury.  相似文献   

7.
At the early onset of the 20th century, several studies already reported that the gray matter was implicated in the histopathology of multiple sclerosis (MS). However, as white matter pathology long received predominant attention in this disease, and histological staining techniques for detecting myelin in the gray matter were suboptimal, it was not until the beginning of the 21st century that the true extent and importance of gray matter pathology in MS was finally recognized. Gray matter damage was shown to be frequent and extensive, and more pronounced in the progressive disease phases. Several studies subsequently demonstrated that the histopathology of gray matter lesions differs from that of white matter lesions. Unfortunately, imaging of pathology in gray matter structures proved to be difficult, especially when using conventional magnetic resonance imaging (MRI) techniques. However, with the recent introduction of several more advanced MRI techniques, the detection of cortical and subcortical damage in MS has considerably improved. This has important consequences for studying the clinical correlates of gray matter damage. In this review, we provide an overview of what has been learned about imaging of gray matter damage in MS, and offer a brief perspective with regards to future developments in this field.  相似文献   

8.
Vascular risk factors play a critical role in the development of cognitive decline and AD (Alzheimer's disease), during aging, and often result in chronic cerebral hypoperfusion. The neurobiological link between hypoperfusion and cognitive decline is not yet defined, but is proposed to involve damage to the brain's white matter. In a newly developed mouse model, hypoperfusion, in isolation, produces a slowly developing and diffuse damage to myelinated axons, which is widespread in the brain, and is associated with a selective impairment in working memory. Cerebral hypoperfusion, an early event in AD, has also been shown to be associated with white matter damage and notably an accumulation of amyloid. The present review highlights some of the published data linking white matter disruption to aging and AD as a result of vascular dysfunction. A model is proposed by which chronic cerebral hypoperfusion, as a result of vascular factors, results in both the generation and accumulation of amyloid and injury to white matter integrity, resulting in cognitive impairment. The generation of amyloid and accumulation in the vasculature may act to perpetuate further vascular dysfunction and accelerate white matter pathology, and as a consequence grey matter pathology and cognitive decline.  相似文献   

9.

Early brain injury (EBI) is the early phase of secondary complications arising from subarachnoid hemorrhage (SAH). G protein-coupled receptor 18 (GPR18) can exert neuroprotective effects during ischemia. In this study, we investigated the roles of GPR18 in different brain regions during EBI using a GPR18 agonist, resolvin D2 (RvD2). Location and dynamics of GPR18 expression were assessed by immunohistochemistry and western blotting in a rat model of SAH based on endovascular perforation. RvD2 was given intranasally at 1 h after SAH, and SAH grade, brain water content and behavior were assayed before sacrifice. TUNEL and dihydroethidium staining of the cortex were performed at 24 h after SAH. Selected brain regions were also examined for pathway related proteins using immunofluorescence and Western blotting. We found that GPR18 was expressed in meninges, hypothalamus, cortex and white matter before EBI. After SAH, GPR18 expression was increased in meninges and hypothalamus but decreased in cortex and white matter. RvD2 improved neurological scores and brain edema after SAH. RvD2 attenuated mast cell degranulation and reduced expression of chymase and tryptase expression in the meninges. In the hypothalamus, RvD2 attenuated inflammation, increased expression of proopiomelanocortin and interleukin-10, as well as decreased expression of nerve peptide Y and tumor necrosis factor-α. In cortex, RvD2 alleviated oxidative stress and apoptosis, and protected the blood–brain barrier. RvD2 also ameliorated white matter injury by elevating myelin basic protein and suppressing amyloid precursor protein. Our results suggest that GPR18 may help protect multiple brain regions during EBI, particularly in the cortex and hypothalamus. Upregulating GPR18 by RvD2 may improve neurological functions in different brain regions via multiple mechanisms.

  相似文献   

10.
Abstract— Activities of β-glucuronidase were measured microchemically in the rat within cortical layers and subcortical white matter of somatosensory and visual cortex and the dorsal hippocampus. Distributions were related to histological composition, densities of myelinated fibers, and lysosome content as indicated by acid phosphatase staining. Three zones of relatively high activities were noted. The first corresponded to the pia-arachnoid and has been related to lysosmal particles within pericytes and macrophages of the meninges and in the pial cells. A second peak appeared in layer V and correlated well with the presence of neuronal lysosomes as detected by histochemical reaction. A third contribution was related to the presence of myelinated fibre bundles and white matter. Data from the literature and from unpublished results were cited to support the conclusion that nonlysosomal sources of enzyme in white matter included a major component from particles sedimenting with the microsomal fraction and a small component from myelin.  相似文献   

11.
White matter injury is the most frequently observed brain lesion in preterm infants. The etiology remains unclear, however, both cerebral hypoperfusion and intrauterine infections have been suggested as risk factors. We compared the neuropathological outcome, including the effect on oligodendrocytes, astrocytes, and microglia, following either systemic asphyxia or endotoxemia in fetal sheep at midgestation. Fetal sheep were subjected to either 25 minutes of umbilical cord occlusion or systemic endotoxemia by administration of Escherichia coli lipopolysaccharide (LPS O111:B4, 100 ng/kg, IV). Periventricular white matter lesions were observed in 2 of 6 asphyxiated fetuses, whereas the remaining animals showed diffuse injury throughout the subcortical white matter and neuronal necrosis in subcortical regions, including the striatum and hippocampus. LPS-treatment resulted in focal inflammatory infiltrates and cystic lesions in periventricular white matter in 2 of 5 animals, but with no neuron specific injury. Both experimental paradigms resulted in microglia activation in the white matter, damaged astrocytes, and loss of oligodendrocytes. These results show that the white matter at midgestation is sensitive to injury following both systemic asphyxia and endotoxemia. Asphyxia induced lesions in both white and subcortical grey matter in association with microglia activation, and endotoxemia resulted in selective white matter damage and inflammation.  相似文献   

12.
In the brain of several animal species testosterone is converted into a series of 5-alpha-reduced metabolites, and especially into 17-beta-hydroxy-5-alpha-androstan-3-one (DHT), by the action of the enzyme 5-alpha-reductase. The formation of DHT has never been evaluated in the white matter structures of the brain, which are composed mainly of myelinated axons. The experiments here described were performed in order to study, in the rat and the mouse, the DHT forming activity of several white matter structures, in comparison with that of the cerebral cortex and of the hypothalamus. Two sampling techniques were used in the rat: microdissection under a stereo-microscope from frozen brain sections of fragments of corpus callosum, optic chiasm and cerebral cortex; fresh tissue macrodissection of subcortical white matter, cerebral cortex and hypothalamus. Only macrodissection was used in the mice. The data show that, independently from the sampling technique used, there are considerable quantitative differences in the distribution pattern of the 5-alpha-reductase activity within different brain structures. Both in the rat and in the mouse, the enzyme appears to be present in higher concentrations in the white matter structures, than in the cerebral cortex and in the hypothalamus. The present results clearly show that the subcortical white matter and the corpus callosum are at least three times as potent as the cerebral cortex in converting testosterone into DHT. An even higher 5-alpha-reductase activity has been found in the optic chiasm. Further work is needed in order to understand the possible physiological role of DHT formation in the white matter structures.  相似文献   

13.
Immunohistochemical and biochemical studies were performed on the brains of adult female and male rats using a specific antibody against bovine adrenocortical cytochrome P-450scc. The results showed that in both male and female rats, the myelinated regions of the white matter are selectively immunostained throughout the brain and that even in rats pretreated with colchicine, there is never positive staining of neuronal cell bodies and their dendrites in any brain region. Western immunoblotting with the P-450scc antibody and enzymatic assays revealed that P-450scc and cholesterol side-chain cleavage activity were present in a homogenate derived from the cortical white matter, but not detectable in that from the cerebral cortex. Furthermore, quantitation of the P-450scc protein in the immunoblots indicated that the concentration of P-450scc in the cortical white matter of both female and male rat brains is approx. 3-4 pmol per mg tissue protein. Thus it could be concluded that in the adult rat brain, P-450scc and cholesterol side-chain cleavage activity are selectively localized only in the myelinated region of the white matter.  相似文献   

14.
The C5 complement protein is a potent inflammatory mediator that has been implicated in the pathogenesis of both stroke and neurodegenerative disease. Microvascular failure is proposed as a potential mechanism of injury. Along these lines, this investigation examines the role of C5 in the setting of chronic cerebral hypoperfusion. Following experimental bilateral carotid artery stenosis, C5 protein deposition increases in the corpus callosum over thirty days (p<0.05). The time course is temporally consistent with the appearance of white matter injury. Concurrently, systemic serum C5 levels do not appear to differ between bilateral carotid artery stenosis and sham-operated mice, implicating a local cerebral process. Following bilateral carotid artery stenosis, C5 deficient mice demonstrate decreased white matter ischemia in the corpus callosum when compared to C5 sufficient controls (p<0.05). Further, the C5 deficient mice exhibit fewer reactive astrocytes and microglia (p<0.01). This study reveals that the C5 complement protein may play a critical role in mediating white matter injury through inflammation in the setting of chronic cerebral hypoperfusion.  相似文献   

15.
16.
PurposeAlthough cerebral perfusion alterations have long been acknowledged in multiple sclerosis (MS), the relationship between measurable perfusion changes and the status of highly active MS has not been examined. We hypothesized that alteration of perfusion can be detected in normal appearing white matter and is increased in high inflammatory patients.ResultsThirteen patients were classified as high-inflammatory. Compared to low-inflammatory patients, the high-inflammatory group demonstrated significantly higher CBV (p = 0.001) and CBF (p = 0.014) values. A mixed model analysis to assess independent variables associated with CBV and CBF revealed that white matter lesion load and atrophy measurements had no significant influence on CBF and CBV.ConclusionThis work provides evidence that high inflammatory lesion load is associated with increased CBV and CBF, underlining the role of global modified microcirculation prior to leakage of the blood-brain barrier in the pathophysiology of MS. Perfusion changes might therefore be sensitive to active inflammation apart from lesion development without local blood–brain barrier breakdown, and could be utilized to further assess the metabolic aspect of current inflammation.  相似文献   

17.
The aim of the study was to explore the possibilities of multi-parametric representations of voxel-wise quantitative MRI data to objectively discriminate pathological cerebral tissue in patients with brain disorders. For this purpose, we recruited 19 patients with Multiple Sclerosis (MS) as benchmark samples and 19 age and gender matched healthy subjects as a reference group. The subjects were examined using quantitative Magnetic Resonance Imaging (MRI) measuring the tissue structure parameters: relaxation rates, R and R, and proton density. The resulting parameter images were normalized to a standard template. Tissue structure in MS patients was assessed by voxel-wise comparisons with the reference group and with correlation to a clinical measure, the Expanded Disability Status Scale (EDSS). The results were visualized by conventional geometric representations and also by multi-parametric representations. Data showed that MS patients had lower R and R, and higher proton density in periventricular white matter and in wide-spread areas encompassing central and sub-cortical white matter structures. MS-related tissue abnormality was highlighted in posterior white matter whereas EDSS correlation appeared especially in the frontal cortex. The multi-parameter representation highlighted disease-specific features. In conclusion, the proposed method has the potential to visualize both high-probability focal anomalies and diffuse tissue changes. Results from voxel-based statistical analysis, as exemplified in the present work, may guide radiologists where in the image to inspect for signs of disease. Future clinical studies must validate the usability of the method in clinical practice.  相似文献   

18.

Background

Cardiovascular disease (CVD) and premature aging have been hypothesized as new risk factors for HIV associated neurocognitive disorders (HAND) in adults with virally-suppressed HIV infection. Moreover, their significance and relation to more classical HAND biomarkers remain unclear.

Methods

92 HIV− infected (HIV+) adults stable on combined antiretroviral therapy (cART) and 30 age-comparable HIV-negative (HIV−) subjects underwent 1H Magnetic Resonance Spectroscopy (MRS) of the frontal white matter (targeting HIV, normal aging or CVD-related neurochemical injury), caudate nucleus (targeting HIV neurochemical injury), and posterior cingulate cortex (targeting normal/pathological aging, CVD-related neurochemical changes). All also underwent standard neuropsychological (NP) testing. CVD risk scores were calculated. HIV disease biomarkers were collected and cerebrospinal fluid (CSF) neuroinflammation biomarkers were obtained in 38 HIV+ individuals.

Results

Relative to HIV− individuals, HIV+ individuals presented mild MRS alterations: in the frontal white matter: lower N-Acetyl-Aspartate (NAA) (p<.04) and higher myo-inositol (mIo) (p<.04); in the caudate: lower NAA (p = .01); and in the posterior cingulate cortex: higher mIo (p<.008– also significant when Holm-Sidak corrected) and higher Choline/NAA (p<.04). Regression models showed that an HIV*age interaction was associated with lower frontal white matter NAA. CVD risk factors were associated with lower posterior cingulate cortex and caudate NAA in both groups. Past acute CVD events in the HIV+ group were associated with increased mIo in the posterior cingulate cortex. HIV duration was associated with lower caudate NAA; greater CNS cART penetration was associated with lower mIo in the posterior cingulate cortex and the degree of immune recovery on cART was associated with higher NAA in the frontal white matter. CSF neopterin was associated with higher mIo in the posterior cingulate cortex and frontal white matter.

Conclusions

In chronically HIV+ adults with long-term viral suppression, current CVD risk, past CVD and age are independent factors for neuronal injury and inflammation. This suggests a tripartite model of HIV, CVD and age likely driven by chronic inflammation.  相似文献   

19.
Pneumococcal meningitis is a life-threatening disease characterized by acute purulent infection of the meninges causing neuronal injury, cortical necrosis and hippocampal apoptosis. Cholinergic neurons and their projections are extensively distributed throughout the central nervous system. The aim of this study was to assess acetylcholinesterase activity in the rat brain after pneumococcal meningitis. In the hippocampus, frontal cortex and cerebrospinal fluid, acetylcholinesterase activity was found to be increased at 6, 12, 24, 48 and 96 hr without antibiotic treatment, and at 48 and 96 hr with antibiotic treatment. Our data suggest that acetylcholinesterase activity could be related to neuronal damage induced by pneumococcal meningitis.  相似文献   

20.
The phylogenetic enlargement of cerebral cortex culminating in the human brain imposed greater communication needs that have been met by the massive expansion of WM (white matter). Damage to WM alters brain function, and numerous neurological diseases feature WM involvement. In the current review, we discuss the major features of WM, the contributions of WM compromise to brain pathophysiology, and some of the mechanisms mediating WM injury. We will emphasize the newly appreciated importance of neurotransmitter signalling in WM, particularly glutamate and ATP signalling, to understanding both normal and abnormal brain functions. A deeper understanding of the mechanisms leading to WM damage will generate much-needed insights for developing therapies for acute and chronic diseases with WM involvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号