首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人脑是自然界中最复杂的系统之一,不同的功能区域相互作用、互相协调,共同构成一个网络来发挥其功能。人脑是一个复杂的网络,具有高效的“小世界”拓扑属性。本文从脑结构到脑功能方面介绍了从不同模态影像学数据构造脑网络的主要进展,并探讨不同的脑疾病患者脑网络拓扑结构是否发生了异常,以及这些异常特征能否用来进行疾病分类,最后对本领域未来的研究做了简单的展望。  相似文献   

2.
The functional order of a collection of nervous elements is available to the system itself, as opposed to the anatomical geometrical order which exists only for external observers. It has been shown before (Part I) that covariances or coincidences in the signal activity of a neural net can be used in the construction of a simultaneous functional order in which a modality is represented as a concatenation of districts with a lattice structure. In this paper we will show how the resulting functional order in a nervous net can be related to the geometry of the underlying detector array. In particular, we will present an algorithm to construct an abstract geometrical complex from this functional order. The algebraic structure of this complex reflects the topological and geometrical structure of the underlying detector array. We will show how the activated subcomplexes of a complex can be related to segments of the detector array that are activated by the projection of a stimulus pattern. The homology of an abstract complex (and therefore of all of its subcomplexes) can be obtained from simple combinatorial operations on its coincidence scheme. Thus, both the geometry of a detector array and the topology of projections of stimulus patterns may have an objective existence for the neural system itself.  相似文献   

3.
Ependymal cells have been suggested to act as neural stem cells and exert beneficial effects after spinal cord injury (SCI). However, the molecular mechanism underlying ependymal cell regulation after SCI remains unknown. To examine the possible effect of IL-17A on ependymal cell proliferation after SCI, we locally administrated IL-17A neutralizing antibody to the injured spinal cord of a contusion SCI mouse model, and revealed that IL-17A neutralization promoted ependymal cell proliferation, which was paralleled by functional recovery and axonal reorganization of both the corticospinal tract and the raphespinal tract. Further, to test whether ependymal cell-specific manipulation of IL-17A signaling is enough to affect the outcomes of SCI, we generated ependymal cell-specific conditional IL-17RA-knockout mice and analyzed their anatomical and functional response to SCI. As a result, conditional knockout of IL-17RA in ependymal cells enhanced both axonal growth and functional recovery, accompanied by an increase in mRNA expression of neurotrophic factors. Thus, Ependymal cells may enhance the regenerative process partially by secreting neurotrophic factors, and IL-17A stimulation negatively regulates this beneficial effect. Molecular manipulation of ependymal cells might be a viable strategy for improving functional recovery.Subject terms: Neuroimmunology, Spinal cord injury  相似文献   

4.
The extent to which brain functions are localized or distributed is a foundational question in neuroscience. In the human brain, common fMRI methods such as cluster correction, atlas parcellation, and anatomical searchlight are biased by design toward finding localized representations. Here we introduce the functional searchlight approach as an alternative to anatomical searchlight analysis, the most commonly used exploratory multivariate fMRI technique. Functional searchlight removes any anatomical bias by grouping voxels based only on functional similarity and ignoring anatomical proximity. We report evidence that visual and auditory features from deep neural networks and semantic features from a natural language processing model, as well as object representations, are more widely distributed across the brain than previously acknowledged and that functional searchlight can improve model-based similarity and decoding accuracy. This approach provides a new way to evaluate and constrain computational models with brain activity and pushes our understanding of human brain function further along the spectrum from strict modularity toward distributed representation.  相似文献   

5.
Many different neural models have been proposed to account for major characteristics of the memory phenomenon family in primates. However, in spite of the large body of neurophysiological, anatomical and behavioral data, there is no direct evidence for supporting one model while falsifying the others. And yet, we can discriminate models based on their complexity and/or their predictive power. In this paper we present a computational framework with our basic assumption that neural information processing is performed by generative networks. A complex architecture is 'derived' by using information-theoretic principles. We find that our approach seems to uncover possible relations among the functional memory units (declarative and implicit memory) and the process of information encoding in primates. The architecture can also be related to the entorhinal-hippocampal loop. An effort is made to form a prototype of this computational architecture and to map it onto the functional units of the neocortex. This mapping leads us to claim that one may gain a better understanding by considering that anatomical and functional layers of the cortex differ. Philosophical consequences regarding the homunculus fallacy are also considered.  相似文献   

6.
This paper emphasizes several characteristics of the neural control of locomotion that provide opportunities for developing strategies to maximize the recovery of postural and locomotor functions after a spinal cord injury (SCI). The major points of this paper are: (i) the circuitry that controls standing and stepping is extremely malleable and reflects a continuously varying combination of neurons that are activated when executing stereotypical movements; (ii) the connectivity between neurons is more accurately perceived as a functional rather than as an anatomical phenomenon; (iii) the functional connectivity that controls standing and stepping reflects the physiological state of a given assembly of synapses, where the probability of these synaptic events is not deterministic; (iv) rather, this probability can be modulated by other factors such as pharmacological agents, epidural stimulation and/or motor training; (v) the variability observed in the kinematics of consecutive steps reflects a fundamental feature of the neural control system and (vi) machine-learning theories elucidate the need to accommodate variability in developing strategies designed to enhance motor performance by motor training using robotic devices after an SCI.  相似文献   

7.
Sylvain Mimoun 《Andrologie》1994,4(2):234-240
Through the opening offered by the psychosomatic approach, we encounter patients with all kinds of andrologic complaints, even quite unspecific ones. But we do know this mode of contact is particulary useful and fruitful when the troubles lean towards chronicity, or are linked to anxiety and/or depression, be that condition cause or consequence. As far as functional symptoms are involved, there is a specific value to this approach. The key-time of that consultant, i.e; psychosomatic andrology, will be described, with the particularity of a ?conversation” instead of the mandatory anamnesis, meanwhile in his life, the possibly perturbing psychological events, as well as an attempt to evaluate the patient’s behaviour. The richness of the clinical examination within this doctor’s induced environment of ?words” coupled to some therapeutic means will be summarized: drugs, somatic and psychological methods (meaning all kind of psychotherapic techniques: support, behaviourist, couple, psychoanalytic or psychoanalysis…) When symptom(s) tend towards chronicity, an emotional subjective life grafts itself on the anatomical substratum, thus creating the opening for psychoemotional affects. This is the core we try to attain and assess through the psychosomatic approach.  相似文献   

8.
While there is widespread interest in and admiration of individuals with exceptional talents, surprisingly little is known about the cognitive and neural mechanisms underpinning talent, and indeed how talent relates to expertise. Because many talents are first identified and nurtured in childhood, it can be difficult to determine whether talent is innate, can be acquired through extensive practice or can only be acquired in the presence of the developing brain. We sought to address some of these issues by studying healthy adults who acquired expertise in adulthood. We focused on the domain of memory and used licensed London taxi drivers as a model system. Taxi drivers have to learn the layout of 25 000 streets in London and the locations of thousands of places of interest, and pass stringent examinations in order to obtain an operating licence. Using neuropsychological assessment and structural and functional magnetic resonance imaging, we addressed a range of key questions: in the context of a fully developed brain and an average IQ, can people acquire expertise to an exceptional level; what are the neural signatures, both structural and functional, associated with the use of expertise; does expertise change the brain compared with unskilled control participants; does it confer any cognitive advantages, and similarly, does it come at a cost to other functions? By studying retired taxi drivers, we also consider what happens to their brains and behaviour when experts stop using their skill. Finally, we discuss how the expertise of taxi drivers might relate to the issue of talent and innate abilities. We suggest that exploring talent and expertise in this manner could have implications for education, rehabilitation of patients with cognitive impairments, understanding individual differences and possibly conditions such as autism where exceptional abilities can be a feature.  相似文献   

9.
Brain imaging methods allow a non-invasive assessment of both structural and functional connectivity. However, the mechanism of how functional connectivity arises in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which functional correlations arise from underlying structural connections taking into account inhomogeneities in the interactions between the brain regions of interest. The local dynamics of a neural population is assumed to be of phase-oscillator type. The considered structural connectivity patterns describe long-range anatomical connections between interacting neural elements. We find a dependence of the simulated functional connectivity patterns on the parameters governing the dynamics. We calculate graph-theoretic measures of the functional network topology obtained from numerical simulations. The effect of structural inhomogeneities in the coupling term on the observed network state is quantified by examining the relation between simulated and empirical functional connectivity. Importantly, we show that simulated and empirical functional connectivity agree for a narrow range of coupling strengths. We conclude that identification of functional connectivity during rest requires an analysis of the network dynamics.  相似文献   

10.
Most of the choices we make have uncertain consequences. In some cases the probabilities for different possible outcomes are precisely known, a condition termed "risky". In other cases when probabilities cannot be estimated, this is a condition described as "ambiguous". While most people are averse to both risk and ambiguity1,2, the degree of those aversions vary substantially across individuals, such that the subjective value of the same risky or ambiguous option can be very different for different individuals. We combine functional MRI (fMRI) with an experimental economics-based method3 to assess the neural representation of the subjective values of risky and ambiguous options4. This technique can be now used to study these neural representations in different populations, such as different age groups and different patient populations.In our experiment, subjects make consequential choices between two alternatives while their neural activation is tracked using fMRI. On each trial subjects choose between lotteries that vary in their monetary amount and in either the probability of winning that amount or the ambiguity level associated with winning. Our parametric design allows us to use each individual''s choice behavior to estimate their attitudes towards risk and ambiguity, and thus to estimate the subjective values that each option held for them. Another important feature of the design is that the outcome of the chosen lottery is not revealed during the experiment, so that no learning can take place, and thus the ambiguous options remain ambiguous and risk attitudes are stable. Instead, at the end of the scanning session one or few trials are randomly selected and played for real money. Since subjects do not know beforehand which trials will be selected, they must treat each and every trial as if it and it alone was the one trial on which they will be paid. This design ensures that we can estimate the true subjective value of each option to each subject. We then look for areas in the brain whose activation is correlated with the subjective value of risky options and for areas whose activation is correlated with the subjective value of ambiguous options.  相似文献   

11.
12.
Following complete transection of the thoracic spinal cord at various times during embryonic development, chick embryos and posthatched animals exhibited various degrees of anatomical and functional recovery depending upon the age of injury. Transection on embryonic day 2 (E2), when neurogenesis is still occurring and before descending or ascending fiber tracts have formed, produced no noticeable behavioral or anatomical deficits. Embryos hatched on their own and were behaviorally indistinguishable from control hatchlings. Similar results were found following transection on E5, an age when neurogenesis is complete and when ascending and descending fiber tracts have begun to project through the thoracic region. Within 48 h following injury on E5, large numbers of nerve fibers were observed growing across the site of transection. By E8, injections of horseradish peroxidase (HRP) administered caudal to the lesion, retrogradely labelled rostral spinal and brainstem neurons. Embryos transected on E5 were able to hatch and could stand and locomote posthatching in a manner that was indistinguishable from controls. Following spinal cord transections on E10, anatomical recovery of the spinal cord at the site of injury was not quite as complete as after E5 transection. Nonetheless, anatomical continuity was restored at the site of injury, axons projected across this region, and rostral spinal and brainstem neurons could be retogradely labelled following HRP injections administered caudal to the lesion. At least part of this anatomical recovery may be mediated by the regeneration or regrowth of lesioned axons. Although none of the embryos transected on E10 that survived to hatching were able to hatch on their own, because several shamoperated embryos were also unable to hatch, we do not attribute this deficit to the spinal transection. When E10-transected embryos were aided in escaping from the shell, they were able to support their own weight, could stand, and locomote, and were generally comparable, behaviorally, to control hatchlings. Repair of the spinal cord following transection on E15 was considerably less complete compared to embryos transected on E2, E5, or E10. However, in some cases, a degree of anatomical continuity was eventually restored and a few spinal neurons rostral to the lesion could be retrogradely labelled with HRP. By contrast, labelled brainstem neurons were never observed following E15 transection. E15 transected embryos were never able to hatch on their own, and when aided in escaping from the shell, the hatchlings were never able to stand, support their own weight or locomote. We conclude that successful anatomical and functional recovery occurs following a complete spinal cord transection in the chick embryo made any time between E2 and E10. By E15, however, there is an altered response to the transection such that anatomical continuity is not restored sufficiently to mediate behavioral or functional recovery. Although the altered response of the chick embryo spinal cord to injury between E10 and E15 could be due to a variety of factors, we favor the notion that cellular or molecular changes associated with axonal growth and guidance occur at this time that are responsible for the transition from successful to unsuccessful recovery.  相似文献   

13.
During developmental critical periods, external stimuli are crucial for information processing, acquisition of new functions or functional recovery after CNS damage. These phenomena depend on the capability of neurons to modify their functional properties and/or their connections, generally defined as "plasticity". Although plasticity decreases after the closure of critical periods, the adult CNS retains significant capabilities for structural remodelling and functional adaptation. At the molecular level, structural modifications of neural circuits depend on the balance between intrinsic growth properties of the involved neurons and growth-regulatory cues of the extracellular milieu. Interestingly, experience acts on this balance, so as to create permissive conditions for neuritic remodelling. Here, we present an overview of recent findings concerning the effects of experience on cellular and molecular processes responsible for producing structural plasticity of neural networks or functional recovery after an insult to the adult CNS (e.g. traumatic injury, ischemia or neurodegenerative disease). Understanding experience-dependent mechanisms is crucial for the development of tailored rehabilitative strategies, which can be exploited alone or in combination with specific therapeutic interventions to improve neural repair after damage.  相似文献   

14.
Magneto- and electroencephalography (MEG/EEG) are neuroimaging techniques that provide a high temporal resolution particularly suitable to investigate the cortical networks involved in dynamical perceptual and cognitive tasks, such as attending to different sounds in a cocktail party. Many past studies have employed data recorded at the sensor level only, i.e., the magnetic fields or the electric potentials recorded outside and on the scalp, and have usually focused on activity that is time-locked to the stimulus presentation. This type of event-related field / potential analysis is particularly useful when there are only a small number of distinct dipolar patterns that can be isolated and identified in space and time. Alternatively, by utilizing anatomical information, these distinct field patterns can be localized as current sources on the cortex. However, for a more sustained response that may not be time-locked to a specific stimulus (e.g., in preparation for listening to one of the two simultaneously presented spoken digits based on the cued auditory feature) or may be distributed across multiple spatial locations unknown a priori, the recruitment of a distributed cortical network may not be adequately captured by using a limited number of focal sources.Here, we describe a procedure that employs individual anatomical MRI data to establish a relationship between the sensor information and the dipole activation on the cortex through the use of minimum-norm estimates (MNE). This inverse imaging approach provides us a tool for distributed source analysis. For illustrative purposes, we will describe all procedures using FreeSurfer and MNE software, both freely available. We will summarize the MRI sequences and analysis steps required to produce a forward model that enables us to relate the expected field pattern caused by the dipoles distributed on the cortex onto the M/EEG sensors. Next, we will step through the necessary processes that facilitate us in denoising the sensor data from environmental and physiological contaminants. We will then outline the procedure for combining and mapping MEG/EEG sensor data onto the cortical space, thereby producing a family of time-series of cortical dipole activation on the brain surface (or "brain movies") related to each experimental condition. Finally, we will highlight a few statistical techniques that enable us to make scientific inference across a subject population (i.e., perform group-level analysis) based on a common cortical coordinate space.  相似文献   

15.
A hallmark of adaptive behavior is the ability to flexibly respond to sensory cues. To understand how neural circuits implement this flexibility, it is critical to resolve how a static anatomical connectome can be modulated such that functional connectivity in the network can be dynamically regulated. Here, we review recent work in the roundworm Caenorhabditis elegans on this topic. EM studies have mapped anatomical connectomes of many C. elegans animals, highlighting the level of stereotypy in the anatomical network. Brain-wide calcium imaging and studies of specified neural circuits have uncovered striking flexibility in the functional coupling of neurons. The coupling between neurons is controlled by neuromodulators that act over long timescales. This gives rise to persistent behavioral states that animals switch between, allowing them to generate adaptive behavioral responses across environmental conditions. Thus, the dynamic coupling of neurons enables multiple behavioral states to be encoded in a physically stereotyped connectome.  相似文献   

16.
磁共振成像技术因对人体无创、任意方向断层扫描三维图像且分辨率较高、提供形态与功能两方面诊断评价等突出优点,成为了临床上用于疾病诊断的重要手段之一。临床上使用磁共振造影剂可以提高成像的分辨率和灵敏度,提高图像质量,增强对比度和可读性。但是,各种成像技术由于实现原理不同,具有各自的优势和缺陷,靠传统单一的诊断模式无法提供疾病的全面信息,因而在对各种复杂疾病进行诊断时会受到一定的限制。因此,将磁共振成像与其他成像技术如CT成像、超声成像等联合起来使用,则可以达到优势互补的效果,能为疾病的临床诊断提供更快捷精确的信息,同时可将磁共振成像与各种治疗方式结合在一起,即开发基于磁共振成像的诊断治疗一体化试剂,以实现对疾病的即时治疗和实时监控。本文主要介绍了磁共振成像造影剂的原理和种类,并且综述了目前国内外在基于磁共振成像的多功能造影剂/诊疗制剂这一领域的研究进展,最后就未来可能的研究方向进行了展望。  相似文献   

17.
Traumatic injury to the spinal cord (SCI) causes death of neurons, disruption of motor and sensory nerve fiber (axon) pathways and disruption of communication with the brain. One of the goals of our research is to promote axon regeneration to restore connectivity across the lesion site. To accomplish this we developed a peripheral nerve (PN) grafting technique where segments of sciatic nerve are either placed directly between the damaged ends of the spinal cord or are used to form a bridge across the lesion. There are several advantages to this approach compared to transplantation of other neural tissues; regenerating axons can be directed towards a specific target area, the number and source of regenerating axons is easily determined by tracing techniques, the graft can be used for electrophysiological experiments to measure functional recovery associated with axons in the graft, and it is possible to use an autologous nerve to reduce the possibility of graft rejection. In our lab we have performed both autologous (donor and recipient are the same animal) and heterologous (donor and recipient are different animals) grafts with comparable results. This approach has been used successfully in both acute and chronic injury situations. Regenerated axons that reach the distal end of the PN graft often fail to extend back into the spinal cord, so we use microinjections of chondroitinase to degrade inhibitory molecules associated with the scar tissue surrounding the area of SCI. At the same time we have found that providing exogenous growth and trophic molecules encourages longer distance axonal regrowth into the spinal cord. Several months after transplantation we perform a variety of anatomical, behavioral and electrophysiological tests to evaluate the recovery of function in our spinal cord injured animals. This experimental approach has been used successfully in several spinal cord injury models, at different levels of injury and in different species (mouse, rat and cat). Importantly, the peripheral nerve grafting approach is effective in promoting regeneration by acute and chronically injured neurons.Download video file.(224M, mp4)  相似文献   

18.
Spinal cord injuries (SCIs) in humans and experimental animals are often associated with varying degrees of spontaneous functional recovery during the first months after injury. Such recovery is widely attributed to axons spared from injury that descend from the brain and bypass incomplete lesions, but its mechanisms are uncertain. To investigate the neural basis of spontaneous recovery, we used kinematic, physiological and anatomical analyses to evaluate mice with various combinations of spatially and temporally separated lateral hemisections with or without the excitotoxic ablation of intrinsic spinal cord neurons. We show that propriospinal relay connections that bypass one or more injury sites are able to mediate spontaneous functional recovery and supraspinal control of stepping, even when there has been essentially total and irreversible interruption of long descending supraspinal pathways in mice. Our findings show that pronounced functional recovery can occur after severe SCI without the maintenance or regeneration of direct projections from the brain past the lesion and can be mediated by the reorganization of descending and propriospinal connections. Targeting interventions toward augmenting the remodeling of relay connections may provide new therapeutic strategies to bypass lesions and restore function after SCI and in other conditions such as stroke and multiple sclerosis.  相似文献   

19.
This review discusses the contributions of functional imaging (fMRI/PET) to our understanding of how action and tool concepts are represented and processed in the human brain. Category-selective deficits in neuropsychological patients have suggested a fine-grained functional specialization within the neural systems of semantics. However, the underlying principles of semantic organization remain controversial. The feature-based account of semantic memory (or 'sensory-motor theory') predicates category-selective effects (e.g. tool vs. animals) on anatomical segregation for different semantic features (e.g. action vs. visual). Within this framework, we will review functional imaging evidence that semantic processing of tools and actions may rely on activations within the visuo-motor system.  相似文献   

20.
A new approach is advanced which is aimed at expanding the scope of antibody catalysis. It entails the design and synthesis of haptens that will elicit antibodies to catalyze acyl transfer reactions by a methodology which we term "bait and switch" catalysis. What we have done involves the placement of a point charge on the hapten in close proximity to, or in direct substitution for, a chemical functional group we wish to transform in the respective substrate. The haptenic charge should induce a complementary charge (on an amino acid residue) at the binding site. The substrate will lack this charge but will retain a similar overall structure. The monoclonal antibodies that bind these substrates now have the potential to act as general acids/bases for substrates having hydrolyzable functional groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号