首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Although oxygen free radicals (OFR) are considered to be one of the pathophysiological mechanisms involved in acute pancreatitis (AP), the contribution of acinar cells to their production is not well established. The aim of the present study was to determine the effect of N-acetylcysteine (NAC) in the course of AP induced by pancreatic duct obstruction (PDO) in rats, directly analysing by flow cytometry the quantity of OFR generated in acinar cells. NAC (50 mg/kg) was administered 1 h before and 1 h after PDO. Measurements by flow cytometry of OFR generated in acinar cells were taken at different PDO times over 24 h, using dihydrorhodamine-123 as fluorescent dye. Histological studies of pancreas and measurements of neutrophil infiltration in the pancreas, pancreatic glutathione (GSH), malondialdehyde (MDA) levels, plasma amylase activity and hemoconcentration were carried out in order to assess the severity of AP at different stages. NAC effectively blunted GSH depletion at early AP stages and prevented OFR generation found in acinar cells as a consequence of AP induced by PDO. This attenuation of the redox state impairment reduced cellular oxidative damage, as reflected by less severe pancreatic lesions, normal pancreatic MDA levels, as well as diminished neutrophil infiltration in pancreas. Hyperamylasemia and hemoconcentration following AP induction were ameliorated by NAC administration at early stages, when oxidative stress seems to be critical in the development of pancreatitis. In conclusion, NAC reinforces the antioxidant defences in acinar cells, preventing OFR generation therefore attenuating oxidative damage and subsequently reducing the severity of PDO-induced AP at early stages of the disease.  相似文献   

2.
The time-course of oxygen free radicals (OFR) generation within acinar cells was studied at different stages of acute pancreatitis (AP) induced in rats by duct obstruction (PDO) for 48 h by flow cytometry, using dihydrorhodamine-123 (DHR) as fluorescent dye. Parallel measurements of the most common markers of oxidative stress such as glutathione (GSH) depletion and malondialdehyde (MDA) levels in pancreas were also performed. OFR production significantly increased within acinar cells at early stages of AP, concomitant with a marked depletion in pancreatic GSH. Lipid peroxidation was significantly enhanced 6 h after PDO, suggesting that the antioxidant defence system of the cell is overwhelmed by OFR production. Both MDA and OFR production in acinar cells decreased to normal values at late AP stages, thus allowing the recovery of pancreatic GSH levels 48 h after PDO. Among the two types of acinar cells differentiated by flow cytometry, R1 and R2, it was the R2 population that showed higher values of DHR dye. However, no differences between the two cell types were found regarding the amount of OFR generation. Our results demonstrate that individual acinar cells significantly contribute to produce large amounts of OFR at early stages of AP. The two existing populations of acinar cells displayed similar behaviour regarding oxidative stress over the course of the disease.  相似文献   

3.
Ramudo L  Manso MA  Vicente S  De Dios I 《Cytokine》2005,32(3-4):125-131
We investigate the ability of acinar cells to produce tumor necrosis factor-alpha (TNF-alpha) and interleukin-10 (IL-10) at different stages of acute pancreatitis (AP). Since oxidative stress is involved in the inflammatory response, the effect of N-acetyl cysteine (NAC) has also been evaluated. AP was induced in rats by bile-pancreatic duct obstruction (BPDO). NAC (50 mg/kg) was administered 1h before and 1h after BPDO. Acinar cells were incubated for 4 h at 37 degrees C in 5% CO2 atmosphere in absence and presence of 24-h BPDO-PAAF (20%, v/v) as stimulant agent. Acinar production of TNF-alpha and IL-10 was analysed by flow cytometry. Plasma amylase activity and histological studies of the pancreas indicated the severity of AP. PAAF significantly stimulated the acinar production of TNF-alpha and IL-10 in control rats. TNF-alpha production was also significantly stimulated in acinar cells of rats with AP, although a decrease in the pro-inflammatory response was found from 6 h after BPDO onwards. However, acinar cells failed to produce IL-10 from 3 h after BPDO. The protective effect of NAC treatment against oxidative cell damage reduced the pancreatic injury and maintained and enhanced the ability of acinar cells to produce IL-10 at early AP stages. As long as acinar cells were not severely damaged in the course of AP, greater ability to produce cytokines in response to PAAF was found in those with higher forward scatter (R2 cells). We suggest that the capability of acinar cells to maintain an appropriate balance between the production of pro- and anti-inflammatory mediators could contribute to determine the degree of severity of AP.  相似文献   

4.
This study focused on the involvement of oxidative stress in the mechanisms mediating chemokine production in different cell sources during mild and severe acute pancreatitis (AP) induced by bile-pancreatic duct obstruction (BPDO) and 3.5% NaTc, respectively. N-Acetylcysteine (NAC) was used as antioxidant treatment. Pancreatic glutathione depletion, acinar overexpression of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant (CINC), and activation of p38MAPK, NF-κB and STAT3 were found in both AP models. NAC reduced the depletion of glutathione in BPDO- but not in NaTc-induced AP, in which oxidative stress overwhelmed the antioxidant capability of NAC. As a result, inhibition of the acinar chemokine expression and signalling pathways occurs in mild, but not in severe AP. However, MCP-1 and CINC expressions in whole pancreas and plasma chemokine levels were not reduced by NAC, even in BPDO-induced AP, suggesting that in addition to acini, other pancreatic cells produced chemokines by antioxidant resistant mechanisms. The high Il-6 plasma levels found during AP, both in NAC-treated and non-treated rats, pointed out cytokines as activating factors of chemokine expression in non-acinar cells. In conclusion, from early AP oxidant-mediated MAPK, NF-κB and STAT3 activation triggers the chemokine expression in acini but not in non-acinar cells.  相似文献   

5.
This study determines the effect of 7-day pretreatment with L364,718 (a potent cholecystokinin (CCK) receptor antagonist) on pancreatic cell turnover during the course of acute pancreatitis (AP) induced in the rat by bile-pancreatic duct obstruction (BPDO). Cell cycle distribution and apoptosis were analyzed by flow cytometry using propidium iodide (PI) and Annexin V staining. Besides altering the pancreatic redox status, long-term CCK blockade inhibited the normal proliferation of acinar cells as indicated by the significant increase in G(0)/G(1)-phase cells and the decrease in G(2)/M-cells found in control rats treated with L364,718 for 7 days. A progressive depletion in pancreatic GSH was found from 3 to 24h after BPDO with similar values in L364,718-pretreated and non-treated rats, which led to a maximum peak in malondialdehyde (MDA) levels 6h after BPDO. However, plasma amylase activity and ascites volume indicated higher severity of AP in L364,718-pretreated rats. CCK blockade enhanced the alterations that appear in cell cycle distribution of acinar cells during AP demonstrated by the significantly higher increase in G(0)/G(1)-cells and decrease in S-cells found in L364,718-treated rats 48h after BPDO. Our results indicate that the renewal of acinar cells deleted by apoptosis 48h after BPDO worsens if CCK is blocked before inducing AP.  相似文献   

6.
Direct in vivo histological detection of oxygen-derived free radicals (OFRs) in inflammatory conditions is not fully resolved. We report an application of cerium histochemistry (in which capture of OFRs by Ce atoms results in laser-reflectant cerium-perhydroxide precipitates) combined with reflectance confocal laser scanning microscopy (CLSM) to demonstrate the evolution of oxidative stress in taurocholate-induced acute pancreatitis (AP) in rats. Animals were perfused with CeCl(3) in vivo and cryostat sections of pancreata were studied by CLSM. Vascular endothelium was immunolabeled for PECAM-1. OFR production by isolated polymorphonuclear leukocytes (PMNs) incubated in vitro with CeCl(3) was quantified by image analysis. In the pancreas, strong OFR-derived cerium reflectance signals were seen in acinar cells at 1-2 hr, capillaries and small venules were frequently engorged by cerium precipitates, and adherent PMNs presented weak intracellular reflectance signals. At 8-24 hr, acinar cell OFR production decreased, whereas adherent/transmigrated PMNs displayed abundant intra- and pericellular reflectance. PECAM-1 expression was unchanged. PMNs from ascites or blood showed significant (p<0.01) time-dependent OFR production, plateauing from 2 hr. The modified cerium capture/CLSM method allows the co-demonstration of in vivo oxidative stress and cellular structures labeled with fluorescent markers. In vivo oxidative stress was shown histologically for the first time in experimental AP.  相似文献   

7.
Little information is available regarding the role of circulating leukocytes in the pathogenesis of acute pancreatitis (AP). Our aim was to explore the time-course of the potential role of inflammatory peripheral blood (PB) cells during AP induced in rats by pancreatic duct obstruction (PDO). Flow cytometry immunophenotyping was used to analyse the distribution of the major circulating leukocyte subsets, the activation state of circulating monocytes as reflected by both CD11b expression and TNF-α production and the relative contribution of T-cell derived pro- (TNF-α) and anti- (IL-10) inflammatory mediators at different stages of PDO-induced AP. A progressive increase in PB neutrophils and monocytes was observed up to 6 h after PDO whereas lymphocytes, as well as CD4+ and CD8+ T-cell subsets, rose as early as 1.5 h after PDO and decreased thereafter. Monocytes were activated in PB from 6 h after inducing AP as reflected by increases in both CD11b expression and spontaneous TNF-α production; nevertheless, they showed the capability of producing TNF-α at earlier AP stages by lipopolysaccharide (LPS) stimulation. In contrast, T-cells were unable to produce TNF-α during AP neither spontaneously nor after stimulation with PMA/Ionomycin. Therefore, only PB monocytes contribute to increase TNF-α levels in plasma as observed from 12 h onwards after inducing AP. Interleukin-10 was produced by T-cells 6 h after PDO only after PMA/Ionomycin stimulation. We conclude that systemic inflammatory events are triggered off at early stages of PDO-induced AP, with the activation of circulating monocytes, though not T-cells, playing a central role.  相似文献   

8.
Pancreatitis-associated ascitic fluid (PAAF) is known to contribute to the progression of acute pancreatitis (AP). We have investigated the capability of PAAF to activate the expression of MCP-1 in pancreatic acinar cells and the involvement of MAPK, NF-κB and STAT3 as downstream signalling transduction pathways. The actions of dexamethasone (Dx) and N-acetylcysteine (NAC) on the PAAF's acinar effects have also been evaluated. Acinar cells were incubated for 1 hr with PAAF collected from rats with severe AP induced by sodium taurocholate in the absence or presence of Dx (10−7 M) or NAC (30 mM). MCP-1 mRNA expression, phospho-p38-MAPK, IκBα, nuclear p65 levels and nuclear translocation of STAT3 were analysed. In response to PAAF, overexpression of MCP-1, phosphorylation of p38-MAPK, degradation of IκBα and increases in p65 nuclear levels and STAT3 activity were found in acinar cells. PAAF-mediated MCP-1 up-regulation was completely suppressed by Dx and NAC. MAPK activation was only inhibited by NAC, NF-κB activation was repressed by Dx and NAC, and STAT3 pathway was strongly blocked by Dx and significantly reduced by NAC. In conclusion, acinar cells were activated by PAAF to produce MCP-1, mainly via NF-κB and STAT3 pathways. Both downstream pathways were targeted by Dx and NAC to repress the PAAF-mediated acinar MCP-1 up-regulation.  相似文献   

9.
Das D  Mukherjee S  Das AS  Mukherjee M  Mitra C 《Life sciences》2006,78(19):2194-2203
Black Tea Extract (BTE), a phytocompound has been attributed with a plethora of health-promoting actions. We have previously demonstrated that BTE inhibits chronic hepatitis in a rat model induced with high-fat and ethanol (EtOH). This study reports that BTE prevents altered pancreatic acinar cell functions, oxidative stress, inflammatory changes and DNA damage in the EtOH+cholecystokinin (CCK)-induced model of pancreatitis. The EtOH+CCK model rats were administered with BTE, and were examined the activity of pancreatic digestive enzymes (amylase and lipase), proinflammatory cytokines (IL-6 and TNF-alpha), oxidative and antioxidative enzymes (nitric oxide, NO; malondialdehyde, MDA; superoxide dismutase, SOD; catalase, CAT), antioxidant level (glutathione, GSH), histopathological changes and the integrity of genomic DNA. Results show that because of chronic EtOH treatment, serum level of amylase and lipase (two biomarkers for pancreatitis) and pancreatic levels of MDA and NO (two biomarkers of oxidative stress) increased significantly, which could be effectively blunted by BTE. BTE could normalize EtOH+CCK-induced suppressed activities of SOD and CAT, and GSH content of pancreatic tissue. Also, histopathological and inflammatory changes during EtOH+CCK-induced pancreatitis could be blunted by BTE. Furthermore, BTE could effectively reduce EtOH+CCK-induced increase in DNA fragmentation and damage. These findings suggest that BTE prevents pancreatitis caused by chronic EtOH+CCK toxicity presumably by enhancing antioxidant, anti-inflammatory and antiapoptotic activity in rats.  相似文献   

10.
Lipids play a role in acute pancreatitis (AP) progression. We investigate the ability of pancreatic acinar cells to trigger inflammatory response in the presence of lipid compounds generated in necrotic areas of peripancreatic adipose tissue (AT) during AP induced in rats by 5% sodium taurocholate. Lipid composition of AT was analyzed by HPLC–mass spectrometry. Acinar inflammatory response to total lipids as well as to either the free fatty acid (FFA) fraction or their chlorinated products (Cl-FFAs) was evaluated. For this, mRNA expression of chemokine (C-C motif) ligand 2 (CCL2) and P-selectin as well as the activation of MAPKs, NF-κB and STAT-3 were analyzed in pancreatic acini. Myeloperoxidase (MPO) activity, as an inducer of Cl-FFA generation, was also analyzed in AT. MPO activity significantly increased in necrotic (AT-N) induced changes in lipid composition of necrotic fat, such as increase in FFA and phospholipid (PL) content, generation of Cl-FFAs and increases in saturated FFAs and in the poly-:mono-unsaturated FFA ratio. Total lipids from AT-N induced overexpression of CCL2 and P-selectin in pancreatic acini as well as MAPKs phosphorylation and activation of NF-κB and STAT3. FFAs, but not Cl-FFAs, up-regulated CCL2 and P-selectin in acinar cells. We conclude that FFAs are capable of up-regulating inflammatory mediators in pancreatic acini and given that they are highly produced during AP, mainly may contribute to the inflammatory response triggered in acinar cells by fat necrosis. No role is played by Cl-FFAs generated as a result of neutrophil infiltration.  相似文献   

11.
The proteins expressed in pancreatic acinar cells during the initiation of acute pancreatitis may determine the severity of the disease. Cerulein pancreatitis is one of the best characterized models for acute pancreatitis. Present study aims to determine the differentially expressed proteins in cerulein-stimulated pancreatic acinar cells as an in vitro model for acute pancreatitis. Rat pancreatic acinar AR42J cells were treated with 10(-8)M cerulein for 12h. The protein patterns separated by two-dimensional electrophoresis using pH gradients of 5-8 were compared between the cells treated without cerulein and those with cerulein. The changed proteins were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. As a result, 10 proteins (Orp150 protein, protein disulfide isomerase related protein, dnaK-type molecular chaperone hsp72-ps1, mitochondrial glutamate dehydrogenase, similar to chaperonin containing TCP-1 beta subunit, RuvB-like protein 1, heterogeneous nuclear ribonucleoprotein H1, aldehyde reductase 1, triosephosphate isomerase 1, peroxiredoxin 2) were up-regulated while four proteins (vasolin-containing protein, 78 kDa glucose-regulated protein precursor, heat shock protein 8, adenosylhomocysteinase) were down-regulated by cerulein in pancreatic acinar AR42J cells. These proteins are related to chaperone, cell defense mechanism against oxidative stress or DNA damage, anti-apoptosis and energy generation. The differentially expressed proteins by ceruein share their functional roles in pancreatic acinar cells, suggesting the possible involvement of oxidative stress, DNA damage, and anti-apoptosis in pathogenesis of acute pancreatitis. Proteins involved in cellular defense mechanism and energy production may protect pancreatic acinar cells during the development of pancreatitis.  相似文献   

12.
Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress, inflammation, and acinar cell injury during the early phase of AP. Fifty-three male Sprague-Dawley rats were randomly allocated into groups: 1) control, 2) sham procedure, 3) AP with no treatment, 4) AP with probiotics, and 5) AP with placebo. AP was induced under general anesthesia by intraductal glycodeoxycholate infusion (15 mM) and intravenous cerulein (5 microg.kg(-1).h(-1), for 6 h). Daily probiotics or placebo were administered intragastrically, starting 5 days prior to AP. After cerulein infusion, pancreas samples were collected for analysis including lipid peroxidation, glutathione, glutamate-cysteine-ligase activity, histological grading of pancreatic injury, and NF-kappaB activation. The severity of pancreatic injury correlated to oxidative damage (r = 0.9) and was ameliorated by probiotics (1.5 vs. placebo 5.5; P = 0.014). AP-induced NF-kappaB activation was reduced by probiotics (0.20 vs. placebo 0.53 OD(450nm)/mg nuclear protein; P < 0.001). Probiotics attenuated AP-induced lipid peroxidation (0.25 vs. placebo 0.51 pmol malondialdehyde/mg protein; P < 0.001). Not only was AP-induced glutathione depletion prevented (8.81 vs. placebo 4.1 micromol/mg protein, P < 0.001), probiotic pretreatment even increased glutathione compared with sham rats (8.81 vs. sham 6.18 miccromol/mg protein, P < 0.001). Biosynthesis of glutathione (glutamate-cysteine-ligase activity) was enhanced in probiotic-pretreated animals. Probiotics enhanced the biosynthesis of glutathione, which may have reduced activation of inflammation and acinar cell injury and ameliorated experimental AP, via a reduction in oxidative stress.  相似文献   

13.
Acute Pancreatitis (AP) is a multifactorial disease. It was characterized by severe inflammation and acinar cell destruction. Thus, the present study was initiated to evaluate the role the of Cinnamic acid nanoparticles (CA-NPs) as a modulator for the redox signaling pathway involved in the development of pancreatitis. AP in rats was induced by L-arginine and exposure to gamma radiation. The pancreatic injury was evaluated using biochemical and histological parameters. Upon the oral administration of CA-NPs, both the severity of acute pancreatitis and the serum levels of amylase and lipase were decreased. Furthermore, the malondialdehyde (MDA) levels of the pancreatic tissue were significantly reduced and the depletion of glutathione was considerably restored. The injury and apoptosis of pancreatic tissues were markedly improved by the reduction of the caspase-3 levels. Additionally, the alleviation of pancreatic oxidative damage by CA-NPs was accompanied by a down-regulation of the NLRP3, NF-κB, and ASK1/MAPK signaling pathways. Collectively, the current findings showed that CA-NPs could protect the pancreatic acinar cell from injury not only by its antioxidant, anti-inflammatory effect but also by modulation of the redox-sensitive signal transduction pathways contributed to acute pancreatitis severity. Accordingly, cinnamic acid nanoparticles have therapeutic potential for the management of acute pancreatitis.  相似文献   

14.
The development of acute pancreatitis (AP) is triggered by acinar events, but the subsequent extra-acinar events, particularly a distinct immune response, appear to determine its severity. Cytokines modulate this immune response and are derived not only from immunocytes but also from pancreatic acinar cells. We studied whether pancreatic acinar cells were also capable of responding to cytokines. The JAK/STAT-pathway represents the main effector for many cytokines. Therefore, expression and regulation of JAK and STAT proteins were investigated in rat pancreatic acinar cells. Western blotting showed expression of JAK1, JAK2, Tyk2, and STAT1, STAT2, STAT3, STAT5, STAT6. In addition, STAT1 was reversibly tyrosine-phosphorylated upon the procedure of acinar cell isolation. In contrast, STAT3-phosphorylation occurred spontaneously after pancreas removal and was not reversible within 8 h. STAT1 phosphorylation was also observed upon treatment with IFN-gamma but not upon EGF, TNF-alpha or IL-6, and inhibited by the JAK2-inhibitor AG-490. Immunohistochemistry revealed cytoplasmic expression of unphosphorylated STAT1 in untreated acinar cells and nuclear translocation of phosphorylated STAT1 following IFN-gamma-treatment. Interestingly, although CCK leads to the activation of multiple stress pathways in pancreatic acinar cells, we found no influence of CCK on phosphorylation of STAT1, STAT3, or STAT5 in the pancreas. In conclusion, our data provide further evidence that pancreatic acinar cells are able to interact with immune cells. Besides stimulating immune cells via cytokine secretion, acinar cells are in turn capable of responding to IFN-gamma via JAK2 and STAT1 which may have an impact on the development of AP.  相似文献   

15.
Isoforms of protein kinase C (PKC) have been shown to modulate some cellular responses such as pathological secretion and generation of inflammatory mediators during acute pancreatitis (AP). We propose that PKC also participates in premature zymogen activation within the pancreatic acinar cell, a key event in the initiation of AP. This hypothesis was examined in in vivo and cellular models of caerulein-induced AP using PKC activators and inhibitors. Phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, 200 nM), a known activator of PKC, enhanced zymogen activation at both 0.1 nM and 100 nM caerulein, concentrations which mimic physiological and supraphysiological effects of the hormone cholecystokinin, respectively, in preparations of pancreatic acinar cells. Isoform-specific PKC inhibitors for PKC-delta and PKC-epsilon reduced supraphysiological caerulein-induced zymogen activation. Using a cell-free reconstitution system, we showed that inhibition of PKC-delta and -epsilon, reduced zymogen activation in both zymogen granule-enriched and microsomal fractions. In dispersed acinar cells, 100 nM caerulein stimulation caused PKC-delta and -epsilon isoform translocation to microsomal membranes using cell fractionation and immunoblot analysis. PKC translocation was confirmed with in vivo studies and immunofluorescence microscopy in pancreatic tissues from rats treated with or without 100 nM caerulein. PKC-epsilon redistributed from an apical to a supranuclear region following caerulein administration. The signal for PKC-epsilon overlapped with granule membrane protein, GRAMP-92, an endosomal/lysosomal marker, in a supranuclear region where zymogen activation takes place. These results indicate that PKC-delta and -epsilon isoforms translocate to specific acinar cell compartments and modulate zymogen activation.  相似文献   

16.
Acute pancreatitis (AP) is an inflammatory disease involving acinar cell injury and rapid production and release of inflammatory cytokines, which play a dominant role in local pancreatic inflammation and systemic complications. 2',4',6'-Tris (methoxymethoxy) chalcone (TMMC), a synthetic chalcone derivative, displays potent anti-inflammatory effects. Therefore, we aimed to investigate whether TMMC might affect the severity of AP and pancreatitis-associated lung injury in mice. We used the cerulein hyperstimulation model of AP. Severity of pancreatitis was determined in cerulein-injected mice by histological analysis and neutrophil sequestration. The pretreatment of mice with TMMC reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (activity of amylase, lipase, trypsin, trypsinogen, and myeloperoxidase and production of proinflammatory cytokines). In addition, TMMC inhibited pancreatic acinar cell death and production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 by inhibiting NF-κB and extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation. Neutralizing antibodies for TNF-α, IL-1β, and IL-6 inhibited cerulein-induced cell death in isolated pancreatic acinar cells. Moreover, pharmacological blockade of NF-κB/ERK1/2 reduced acinar cell death and production of TNF-α, IL-1β, and IL-6 in isolated pancreatic acinar cells. In addition, posttreatment of mice with TMMC showed reduced severity of AP and lung injury. Our results suggest that TMMC may reduce the complications associated with pancreatitis.  相似文献   

17.
18.
目的:明确白细胞介素-6(IL-6)在小鼠急性胰腺炎中的作用及其机制研究。方法:通过胰胆管结扎的方法诱导小鼠急性胰腺炎;分离小鼠胰腺腺泡细胞。采用ELISA方法检测胰腺组织或腺泡细胞裂解物中的细胞因子;通过western blot分析检测组织或细胞中IL-6或ERK表达。结果:IL-6浓度在胰腺组织和腺泡细胞中显著增加(P0.05)。在离体原代小鼠腺泡细胞,TNF-α刺激增加IL-6释放(P0.05);与此同时,IL-6刺激可增加其它促炎性细胞因子的释放,两者都涉及ERK MAP激酶通路。黄酮类化合物木犀草素抑制IL-6刺激引起白细胞介素-6(IL-6)和人巨嗜细胞激活蛋白-1(CCL2/MCP-1)释放。最后进一步证实,IL-6激活人胰腺组织中的ERK。结论:IL-6在急性胰腺炎中增加,激活炎症通路并加重急性胰腺炎。  相似文献   

19.
Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the l-arginine (l-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of l-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each l-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-κB) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of l-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-κB activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-κB activation and to promote acinar cell proliferation.  相似文献   

20.
Li XL  Li K  Li YY  Feng Y  Gong Q  Li YN  Li XJ  Chen CJ 《Cell stress & chaperones》2009,14(2):199-206
The expression of heat-shock protein 60 (also known as chaperonin 60, Cpn60) in experimental acute pancreatitis (AP) is considered to play an active role in the prevention of abnormal enzyme accumulation and activation in pancreatic acinar cells. However, there are controversial results in the literature regarding the relationship between the abnormality of Cpn60 expression and AP onset and development. The purpose of this study was to investigate the alternations of Cpn60 expression and the relationship between the abnormal expression of Cpn60 and AP progression in rat severe acute pancreatitis (SAP) models. In this report, we induced SAP in Sprague–Dawley (SD) rats by reverse injection of sodium deoxycholate into the pancreatic duct, and examined the dynamic changes of Cpn60 expression in pancreatic tissues from different time points and at different levels with techniques of real-time PCR, western blotting, and immunohistochemistry. At 1 h after SAP induction, the expression of Cpn60 mRNA in the AP pancreatic tissues was higher than those in the sham-operation group and normal control group, but decreased sharply as the time period was extended, and there was a significant difference between 1 h and 10 h after SAP induction (p < 0.05). In the AP process, Cpn60 protein expression showed transient elevation as well, and the increased protein expression occurred predominantly in affected, but not totally destroyed, pancreatic acinar cells. As AP progressed, the pancreatic tissues were seriously damaged, leading to a decreased overall Cpn60 protein expression. Our results show a complex pattern of Cpn60 expression in pancreatic tissues of SAP rats, and the causality between the damage of pancreatic tissues and the decrease of Cpn60 level needs to be investigated further. Xue-Li Li and Kun Li contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号