首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 841 毫秒
1.
2.
The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii) HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches.  相似文献   

3.
HER2, a member of the epidermal growth factor receptor (EGFR) tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we applied a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2 and their downstream activation of ERK to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we could separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrated that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activate ERK were quantitatively equivalent. We found that HER2-mediated effects on EGFR dimerization and trafficking were sufficient to explain the observed HER2-mediated amplification of epidermal growth factor-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared with the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking yielding increased EGFR sparing cause the sustained HER2-mediated enhancement of ERK signaling.  相似文献   

4.
The ErbB family of receptor tyrosine kinases consists of four members: the epidermal growth factor receptor (EGFR/ErbB1), ErbB2/HER2/Neu, ErbB3/HER3, and ErbB4/HER4. ErbB2 is an "orphan" for which there is no naturally occurring, soluble ligand. ErbB3 lacks tyrosine kinase activity. Thus, we hypothesized that ErbB2 enhances ligand-induced ErbB family receptor signalling through mass action. In contrast, we hypothesized that ErbB3 reduces ligand-induced ErbB family receptor signalling by forming receptor heterodimers that cannot undergo bidirectional cross-phosphorylation. We tested these hypotheses using three cell lines that express equal levels of ErbB4. One expresses ErbB4 alone, the second expresses ErbB2 and ErbB4, and the third expresses ErbB3 and ErbB4. We treated the cells with the ErbB4 ligands betacellulin (BTC) and neuregulin1beta (NRG1 beta) and assayed ErbB4 tyrosine phosphorylation. ErbB2 and ErbB3 do not affect the amount of ligand-induced ErbB4 tyrosine phosphorylation. We will discuss these findings within the context of a model for ErbB receptor signalling.  相似文献   

5.
Dimerization is essential for activity of human epidermal growth factor receptors (HER1/EGFR, HER2/ErbB2, HER3/ErbB3, and ErbB4) and mediates intracellular signaling events leading to cancer cell proliferation, survival, and resistance to therapy. HER2 is the preferred dimerization partner. Activation of HER signaling pathways may be blocked by inhibition of dimer formation using a monoclonal antibody (MAb) directed against the dimerization domain of HER2. The murine MAb 2C4 that specifically binds the HER2 dimerization domain was cloned as a chimeric antibody, humanized using a computer-generated model to guide framework substitutions, and variants were tested as Fabs. Pharmacokinetics and toxicology were evaluated in rodents and cynomolgus monkeys. Cloning the variable domains of MAb 2C4 into a vector containing human kappa and CH1 domains allowed construction of a mouse-human chimeric Fab. DNA sequencing of the chimeric clone permitted identification of CDR residues. The full-length IgG1 of variant F-10 was equivalent in binding to chimeric IgG1 and was designated pertuzumab (rhuMAb 2C4; Omnitarg). Pertuzumab pharmacokinetics was best described by a two-compartment model with a distribution phase of <1 day, terminal half-life of ~10 days, and volume of distribution of ~40 mL/kg that approximates serum volume. With the exception of diarrhea, pertuzumab was generally well tolerated in cynomolgus monkeys. Pertuzumab, a recombinant humanized IgG1 MAb, is the first of a new class of agents known as HER dimerization inhibitors. Inhibition of HER dimerization may be an effective anticancer strategy in tumors with either normal or elevated expression of HER2.  相似文献   

6.
A well-coordinated interaction between extracellular signals and intracellular response forms the basis of life within multicellular organisms, with growth factors playing a crucial role in these interactions. Discoveries in recent years have shown that components of the Epidermal Growth Factor (EGF) signaling system have frequently been used by cancer cells to autonomously provide survival and proliferation signals. The main focus of this review is the ErbB epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases including ErbB1/EGFR, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4 as therapeutic targets. Since the ErbB receptor family regulates cell proliferation through the Ras-mitogen-activated protein kinase (RAS/MAPK) pathway, and cell survival and transformation through the phosphatidylinositol 3-kinase (PI3K/AKT) pathway, pharmacological targeting of these pathways is also discussed. We will also address the clinical studies that have been conducted to evaluate antibody-based therapies mostly on solid tumors and hematologic malignancies.  相似文献   

7.
Dopamine agonist resistance or intolerance is encountered in approximately 20% of prolactinoma patients. Because human epidermal growth factor receptor 2 (HER2)/ErbB2 is overexpressed in prolactinomas and ErbB receptor ligands regulate prolactin (PRL) gene expression, we tested the role of HER2/ErbB2 in prolactinoma hormone regulation and adenoma cell proliferation to assess the rationale for targeting this receptor for prolactinoma therapy. As we showed prolactinoma HER2 overexpression, we generated constitutively active HER2-stable GH3 cell transfectants (HER2CA). PRL mRNA levels were induced approximately 250-fold and PRL secretion was enhanced 100-fold in HER2CA cells, which also exhibited increased proliferation. Lapatinib, a dual tyrosine kinase inhibitor (TKI) of both epidermal growth factor receptor (EGFR)/ErbB1 and HER2, blocked receptor signaling, and suppressed PRL expression more than gefitinib, a TKI of EGFR/ErbB1. Lapatinib also suppressed colony formation in soft agar more than gefitinib. Oral lapatinib treatment caused tumor shrinkage and serum PRL suppression both in HER2CA transfectant-inoculated Wistar-Furth rats and in estrogen-induced Fischer344 rat prolactinomas. In cultured human cells derived from resected prolactinoma tissue, lapatinib suppressed both PRL mRNA expression and secretion. These results demonstrate that prolactinoma HER2 potently induces PRL and regulates experimental prolactinoma cell proliferation. Because pituitary HER2 signaling is abrogated by TKIs, this receptor could be an effective target for prolactinoma therapy.  相似文献   

8.
ErbB4 is a member of the epidermal growth factor receptor(EGFR) family of tyrosine kinases, which includes EGFR/ErbB1, ErbB2/HER2/Neu, and ErbB3/HER3. These receptors play important roles both in normal development and in neoplasia. For example, deregulated signaling by ErbB1 and ErbB2 is observed in many human malignancies. In contrast, the roles that ErbB4 plays in tumorigenesis and normal biological processes have not been clearly defined. To identify the biological responses that are coupled to ErbB4, we have constructed three constitutively active ErbB4 mutants. Unlike a constitutively active ErbB2 mutant, the ErbB4 mutants are not coupled to increased cell proliferation, loss of contact inhibition, or anchorage independence in a rodent fibroblast cell line. This suggests that ErbB2 and ErbB4 may play distinct roles in tumorigenesis in vivo.  相似文献   

9.
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. This family includes EGFR/ErbB1/HER1, ErbB2/HER2/Neu ErbB3/HER3, and ErbB4/HER4. For many years it was believed that EGFR plays a minor role in the development and progression of breast malignancies. However, recent findings have led investigators to revisit these beliefs. Here we will review these findings and propose roles that EGFR may play in breast malignancies. In particular, we will discuss the potential roles that EGFR may play in triple-negative tumors, resistance to endocrine therapies, maintenance of stem-like tumor cells, and bone metastasis. Thus, we will propose the contexts in which EGFR may be a therapeutic target.  相似文献   

10.
OBJECTIVE: Lapatinib (Tykerb, GW572016), a potent inhibitor of the catalytic activities of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) (ErbB2), inhibits population growth of selected EGFR and HER2 overexpressing cell lines. Previous studies with a small number of cell lines suggest a correlation between overexpression of EGFR and/or HER2 and sensitivity to growth inhibition by lapatinib; however, the precise determinants of lapatinib selectivity for tumour and/or other cells remain unclear. MATERIALS AND METHODS: To clarify the determinants of its selectivity in cultured cells, lapatinib-induced cell population growth inhibition and relative EGFR and HER2 protein expression were quantified in 61 different human tumour cell lines from 12 tumour types, two oncogene transformed human cell lines and two normal human cell cultures. Using statistical tools to analyse the data, a model describing the relationship between lapatinib IC(50) (the response variable) and EGFR and HER2 expression and tissue type (explanatory variables) was derived. CONCLUSION: The results suggest that simultaneous consideration of EGFR and HER2 expression, as well as tissue type yields the best determinant of lapatinib selectivity in cultured cells.  相似文献   

11.
Members of the epidermal growth factor receptor, or ErbB, family of receptor tyrosine kinases have a single transmembrane (TM) alpha-helix that is usually assumed to play a passive role in ligand-induced dimerization and activation of the receptor. However, recent studies with the epidermal growth factor receptor (ErbB1) and the erythropoietin receptor have indicated that interactions between TM alpha-helices do contribute to stabilization of ligand-independent and/or ligand-induced receptor dimers. In addition, not all of the expected ErbB receptor ligand-induced dimerization events can be recapitulated using isolated extracellular domains, suggesting that other regions of the receptor, such as the TM domain, may contribute to dimerization in vivo. Using an approach for analyzing TM domain interactions in Escherichia coli cell membranes, named TOXCAT, we find that the TM domains of ErbB receptors self-associate strongly in the absence of their extracellular domains, with the rank order ErbB4-TM > ErbB1-TM equivalent to ErbB2-TM > ErbB3-TM. A limited mutational analysis suggests that dimerization of these TM domains involves one or more GXXXG motifs, which occur frequently in the TM domains of receptor tyrosine kinases and are critical for stabilizing the glycophorin A TM domain dimer. We also analyzed the effect of the valine to glutamic acid mutation in ErbB2 that constitutively activates this receptor. Contrary to our expectations, this mutation reduced rather than increased ErbB2-TM dimerization. Our findings suggest a role for TM domain interactions in ErbB receptor function, possibly in stabilizing inactive ligand-independent receptor dimers that have been observed by several groups.  相似文献   

12.
The epidermal growth factor (EGF)-like family of growth factors elicits cellular responses by stimulating the dimerization, autophosphorylation, and tyrosine kinase activities of the ErbB family of receptor tyrosine kinases. Although several different EGF-like ligands are capable of binding to a single ErbB family member, it is generally thought that the biological and biochemical responses of a single receptor dimer to different ligands are indistinguishable. To test whether an ErbB receptor dimer is capable of discriminating among ligands we have examined the effect of four EGF-like growth factors on signaling through the ErbB4 receptor homodimer in CEM/HER4 cells, a transfected human T cell line ectopically expressing ErbB4 in an ErbB-null background. Despite stimulating similar levels of gross receptor tyrosine phosphorylation, the EGF-like growth factors betacellulin, neuregulin-1beta, neuregulin-2beta, and neuregulin-3 exhibited different biological potencies in a cellular growth assay. Moreover, the different ligands induced different patterns of recruitment of intracellular signaling proteins to the activated receptor and induced differential usage of intracellular kinase signaling cascades. Finally, two-dimensional phosphopeptide mapping of ligand-stimulated ErbB4 revealed that the different growth factors induce different patterns of receptor tyrosine phosphorylation. These results indicate that ErbB4 activation by growth factors is not generic and suggest that individual ErbB receptors can discriminate between different EGF-like ligands within the context of a single receptor dimer. More generally, our observations significantly modify our understanding of signaling through receptor tyrosine kinases and point to a number of possible models for ligand-mediated signal diversification.  相似文献   

13.
The epidermal growth factor (EGF) receptor is a member of the ErbB family of receptors that also includes ErbB2, ErbB3, and ErbB4. These receptors form homo- and heterodimers in response to ligand with ErbB2 being the preferred dimerization partner. Here we use (125)I-EGF binding to quantitate the interaction of the EGF receptor with ErbB2. We show that the EGFR/ErbB2 heterodimer binds EGF with a 7-fold higher affinity than the EGFR homodimer. Because it cannot bind a second ligand, the EGFR/ErbB2 heterodimer is not subject to ligand-induced dissociation caused by the negatively cooperative binding of EGF to the second site on the EGFR homodimer. This increases the stability of the heterodimer relative to the homodimer and is associated with enhanced and prolonged EGF receptor autophosphorylation. These effects are independent of the kinase activity of ErbB2 but require back-to-back dimerization of the EGF receptor with ErbB2. Back-to-back dimerization is also required for phosphorylation of ErbB2. These findings provide a molecular explanation for the apparent preference of the EGF receptor for dimerizing with ErbB2 and suggest that the phosphorylation of ErbB2 occurs largely in the context of the EGFR/ErbB2 heterodimer, rather than through lateral phosphorylation of isolated ErbB2 subunits.  相似文献   

14.
Signalling through protein tyrosine kinases (PTKs) is critical in the regulation of important cellular processes and its deregulation is associated with pathophysiological disorders such as cancer. We investigated the function of the PTK spleen tyrosine kinase (Syk) in the regulation of growth factor signalling pathways in human mammary epithelial cells. Our results show that downregulation of endogenous Syk expression enhances the ligand-induced activity of the epidermal growth factor receptor (EGFR) but not that of the closely related human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3) receptors. Moreover, Syk function interfered with EGFR-mediated cell responses such as proliferation and survival of mammary epithelial cells. A mechanistic link between Syk and EGFR is further supported by the colocalisation of the two PTKs in membrane fractions as well as the regulatory feedback effects of the EGFR kinase on Syk activity. Our findings demonstrate that Syk acts a negative control element of EGFR signalling.  相似文献   

15.
16.
Human epidermal growth factor receptor 3 (HER3, also known as ErbB3) has emerged as relevant target for antibody-mediated tumor therapy. Here, we describe a novel human antibody, IgG 3–43, recognizing a unique epitope formed by domain III and parts of domain IV of the extracellular region of HER3, conserved between HER3 and mouse ErbB3. An affinity of 11 nM was determined for the monovalent interaction. In the IgG format, the antibody bound recombinant bivalent HER3 with subnanomolar affinity (KD = 220 pM) and HER3-expressing tumor cells with EC50 values in the low picomolar range (27 - 83 pM). The antibody competed with binding of heregulin to HER3-expressing cells, efficiently inhibited phosphorylation of HER3 as well as downstream signaling, and induced receptor internalization and degradation. Furthermore, IgG 3–43 inhibited heregulin-dependent proliferation of several HER3-positive cancer cell lines and heregulin-independent colony formation of HER2-overexpressing tumor cell lines. Importantly, inhibition of tumor growth and prolonged survival was demonstrated in a FaDu xenograft tumor model in SCID mice. These findings demonstrate that by binding to the membrane-proximal domains III and IV involved in ligand binding and receptor dimerization, IgG 3–43 efficiently inhibits activation of HER3, thereby blocking tumor cell growth both in vitro and in vivo.  相似文献   

17.
The epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four members: EGFR (HER1/ErbB1), HER2/neu (ErbB2), HER3 (ErbB3) and HER4 (ErbB4). Receptor activation via ligand binding leads to downstream signaling that influence cell proliferation, angiogenesis, invasion and metastasis. Aberrant expression or activity of EGFR and HER2 have been strongly linked to the etiology of several human epithelial cancers including but not limited to head and neck squamous cell carcinoma (HNSCC), non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and breast cancer. With this, intense efforts have been made to inhibit the activity of the EGFR and HER2 by designing antibodies against the ligand binding domains (cetuximab, panitumumab and trastuzumab) or small molecules against the tyrosine kinase domains (erlotinib, gefitinib, and lapatinib). Both approaches have shown considerable clinical promise. However, increasing evidence suggests that the majority of patients do not respond to these therapies, and those who show initial response ultimately become refractory to treatment. While mechanisms of resistance to tyrosine kinase inhibitors have been extensively studied, resistance to monoclonal antibodies is less well understood, both in the laboratory and in the clinical setting. In this review, we discuss resistance to antibody-based therapies against the EGFR and HER2, similarities between these resistance profiles, and strategies to overcome resistance to HER family targeting monoclonal antibody therapy.  相似文献   

18.
We have previously demonstrated that epidermal growth factor (EGF) inhibits calcium-dependent chloride secretion via a mechanism involving stimulation of phosphatidylinositol 3-kinase (PI3-K). The muscarinic agonist of chloride secretion, carbachol (CCh), also stimulates an antisecretory pathway that involves transactivation of the EGF receptor (EGFR) but does not involve PI3-K. Here, we have examined if ErbB receptors, other than the EGFR, have a role in regulation of colonic secretion and if differential effects on ErbB receptor activation may explain the ability of the EGFR to propagate diverse signaling pathways in response to EGF versus CCh. Basolateral, but not apical, addition of the ErbB3/ErbB4 ligand alpha-heregulin (HRG; 1-100 ng/ml) inhibited secretory responses to CCh (100 microM) across voltage-clamped T(84) epithelial cells. Immunoprecipitation/Western blot studies revealed that HRG (100 ng/ml) stimulated tyrosine phosphorylation and dimerization of ErbB3 and ErbB2, but had no effect on phosphorylation of the EGFR. HRG also stimulated recruitment of the p85 subunit of PI3-K to ErbB3/ErbB2 receptor dimers, while the PI3-K inhibitor, wortmannin (50 nM), completely reversed the inhibitory effect of HRG on CCh-stimulated secretion. Further studies revealed that, while both EGF (100 ng/ml) and CCh (100 microM) stimulated phosphorylation of the EGFR, only EGF stimulated phosphorylation of ErbB2, and neither stimulated ErbB3 phosphorylation. EGF, but not CCh, stimulated the formation of EGFR/ErbB2 receptor dimers and the recruitment of p85 to ErbB2. We conclude that ErbB2 and ErbB3 are expressed in T(84) cells and are functionally coupled to inhibition of calcium-dependent chloride secretion. Differential dimerization with other ErbB family members may underlie the ability of the EGFR to propagate diverse inhibitory signals in response to activation by EGF or transactivation by CCh.  相似文献   

19.
The flow of information through the epidermal growth factor receptor (EGFR) is shaped by molecular interactions in the plasma membrane. The EGFR is associated with lipid rafts, but their role in modulating receptor mobility and subsequent interactions is unclear. To investigate the role of nanoscale rafts in EGFR dynamics, we used single-molecule fluorescence imaging to track individual receptors and their dimerization partner, human epidermal growth factor receptor 2 (HER2), in the membrane of human mammary epithelial cells. We found that the motion of both receptors was interrupted by dwellings within nanodomains. EGFR was significantly less mobile than HER2. This difference was likely due to F-actin because its depolymerization led to similar diffusion patterns between the EGFR and HER2. Manipulations of membrane cholesterol content dramatically altered the diffusion pattern of both receptors. Cholesterol depletion led to almost complete confinement of the receptors, whereas cholesterol enrichment extended the boundaries of the restricted areas. Interestingly, F-actin depolymerization partially restored receptor mobility in cholesterol-depleted membranes. Our observations suggest that membrane cholesterol provides a dynamic environment that facilitates the free motion of EGFR and HER2, possibly by modulating the dynamic state of F-actin. The association of the receptors with lipid rafts could therefore promote their rapid interactions only upon ligand stimulation.  相似文献   

20.
Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor kinases (other members include EGFR or HER1, HER3, and HER4) that are involved in signaling cascades for cell growth and differentiation. It is well established that HER2-mediated heterodimerization has important implications in cancer. Deregulation of signaling pathways and overexpression of HER2 is known to occur in cancer cells, indicating a role of HER2 in tumorigenesis. Therefore, blocking HER2-mediated signaling has potential therapeutic value. We have designed several peptidomimetics to inhibit HER2-mediated signaling for cell growth. One of the compounds (HERP5, Arg-beta Naph-Phe) exhibited antiproliferative activity with IC(50) values in the micromolar-to-nanomolar range in breast cancer cell lines. Binding of fluorescently labeled HERP5 to HER2 protein was evaluated by fluorescence assay, microscopy, and circular dichroism spectroscopy. Results indicated that HERP5 binds to the extracellular region of the HER2 protein. Structure of the peptidomimetic HERP5 was studied by NMR and molecular dynamics simulations. Based on these results a model was proposed for HER2-EGFR dimerization and possible blocking by HERP5 peptidomimetic using a protein-protein docking method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号