首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme tissue-type plasminogen activator (t-PA) and its substrate Glu-plasminogen can both bind to fibrin. The assembly of these three components results in about a 1000-fold acceleration of the conversion of Glu-plasminogen into plasmin. Fibrin binding of t-PA is mediated both by its finger (F) domain and its kringle-2 domain. Fibrin binding of Glu-plasminogen involves its kringle structures (K1-K5). It has been suggested that particular kringles contain lysine-binding sites and/or aminohexyl-binding sites, exhibiting affinity for specific carboxyl-terminal lysines and intrachain lysines, respectively. We investigated the possibility that t-PA and Glu-plasminogen kringles share common binding sites in fibrin, limitedly digested with plasmin. For that purpose we performed competition experiments, using conditions that exclude plasmin formation, with Glu-plasminogen and either t-PA or two deletion mutants, lacking the F domain (t-PA del.F) or lacking the K2 domain (t-PA del.K2). Our data show that fibrin binding of t-PA, mediated by the F domain, is independent of Glu-plasminogen binding. In contrast, partial inhibition by Glu-plasminogen of t-PA K2 domain-mediated fibrin binding is observed that is dependent on carboxyl-terminal lysines, exposed in fibrin upon limited plasmin digestion. Half-maximal competition of fibrin binding of both t-PA and t-PA del.F is obtained at 3.3 microM Glu-plasminogen. The difference between this value and the apparent dissociation constant of Glu-plasminogen binding to limitedly digested fibrin (12.1 microM) under these conditions is attributed to multiple, simultaneous interactions, each having a separate affinity. It is concluded that t-PA and Glu-plasminogen can bind to the same carboxyl-terminal lysines in limitedly digested fibrin, whereas binding sites composed of intrachain lysines are unique both for the K2 domain of t-PA and the Glu-plasminogen kringles.  相似文献   

2.
3.
α(2)-Antiplasmin is the physiological inhibitor of plasmin and is unique in the serpin family due to N- and C-terminal extensions beyond its core domain. The C-terminal extension comprises 55 amino acids from Asn-410 to Lys-464, and the lysine residues (Lys-418, Lys-427, Lys-434, Lys-441, Lys-448, and Lys-464) within this region are important in mediating the initial interaction with kringle domains of plasmin. To understand the role of lysine residues within the C terminus of α(2)-antiplasmin, we systematically and sequentially mutated the C-terminal lysines, studied the effects on the rate of plasmin inhibition, and measured the binding affinity for plasmin via surface plasmon resonance. We determined that the C-terminal lysine (Lys-464) is individually most important in initiating binding to plasmin. Using two independent methods, we also showed that the conserved internal lysine residues play a major role mediating binding of the C terminus of α(2)-antiplasmin to kringle domains of plasmin and in accelerating the rate of interaction between α(2)-antiplasmin and plasmin. When the C terminus of α(2)-antiplasmin was removed, the binding affinity for active site-blocked plasmin remained high, suggesting additional exosite interactions between the serpin core and plasmin.  相似文献   

4.
Five cDNA encoding human tissue-type plasminogen activator (t-PA) variants with deletion and/or duplication of structural/functional domains were cloned and expressed in Chinese hamster ovary cells. The mutants included: rt-PA-delta FE (where r represents recombinant), with deletion of the finger (F) and growth factor (E) domains; rt-PA-delta K1 delta K2, with replacement of kringle 1 (K1) by a second copy of kringle 2 (K2); and rt-PA-delta FK1 delta K2, rt-PA-delta EK1 delta K2, and rt-PA-delta FEK1 delta K2, with deletions in rt-PA-delta K1 delta K2 of the finger or growth factor domain or both, respectively. The variant rt-PAs, purified to homogeneity, were obtained essentially as single-chain molecules. CNBr-digested fibrinogen enhanced plasminogen activation between 110-fold with rt-PA-delta EK1 delta K2 and 150-fold with rt-PA-delta FEK1 delta K2 as compared to 140-fold with rt-PA. All rt-PA moieties showed a comparable concentration-dependent binding to fibrin, except rt-PA-delta FE, which had significantly reduced binding that was, however, partially restored by additional replacement of K1 with K2. All the rt-PA variants with two copies of K2 showed increased binding to lysine-Sepharose as compared to rt-PA, whereas rt-PA-delta FE had reduced binding. All rt-PA moieties induced a similar time- and concentration-dependent lysis of a 125I-fibrin-labeled plasma clot immersed in human plasma. Equally effective concentrations (causing 50% clot lysis in 2 h) ranged between 1.0 microgram/ml for rt-PA-delta K1 delta K2 and 1.6 micrograms/ml for rt-PA-delta FE as compared to 0.5 microgram/ml for rt-PA. Thus, replacement in rt-PA of K1 by a second copy of K2, which is known to contain a lysine-binding site, significantly enhances its affinity for lysine, with maintenance of its affinity for intact fibrin. Deletion of the finger and growth factor domains results in decreased fibrin affinity and fibrinolytic potency in a plasma milieu, which are partially restored by replacement of K1 by K2.  相似文献   

5.
利用同源模建方法预测了t-PAK1区的三维结构。通过结构叠合确定了t-PAK1、K2区,纤溶酶原K1、K4区及UK K区的Lysine结合口袋。静电势计算及疏水性分析表明,在t-PA K2C A2区以及纤溶酶原K1、K4区与纤维蛋白裸露的Lysine之间在明显的的静电势互补和疏水面契合。确定了Kringle区结合口袋与Lysine亲和重要所基酸,分析了t-PAK1区,UK K区不能结合Lysine  相似文献   

6.
It was demonstrated that plasminogen and the plasmin heavy chain form a complex with an immobilized fibrinogen fragment E. The E-fragment interacts, in its turn, with the immobilized heavy chain; this interaction is provided for by the lysin binding sites of the plasminogen molecule. The plasmin light chain having no lysin binding sites is specifically absorbed on the immobilized fragment D, whereas the D-fragment--on the immobilized light chain. The elution is caused by arginine or benzamidine; 6-aminohexanoic acid does not affect this interaction. It is assumed that the interaction of plasminogen and plasmin with fibrin is provided for not only by the lysine binding but also by the benzamidine binding sites of the plasminogen molecule.  相似文献   

7.
Partial digestion of fibrin by plasmin exposes C-terminal lysine residues, which comprise new binding sites for both plasminogen and tissue-type plasminogen activator (tPA). This binding increases the catalytic efficiency of plasminogen activation by 3000-fold compared with tPA alone. The activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrinolysis by removing these residues, which causes a 97% reduction in tPA catalytic efficiency. The aim of this study was to determine the kinetics of TAFIa-catalyzed lysine cleavage from fibrin degradation products and the kinetics of loss of plasminogen-binding sites. We show that the k(cat) and K(m) of Glu(1)-plasminogen (Glu-Pg)-binding site removal are 2.34 s(-1) and 142.6 nm, respectively, implying a catalytic efficiency of 16.21 μm(-1) s(-1). The corresponding values of Lys(77)/Lys(78)-plasminogen (Lys-Pg)-binding site removal are 0.89 s(-1) and 96 nm implying a catalytic efficiency of 9.23 μm(-1) s(-1). These catalytic efficiencies of plasminogen-binding site removal by TAFIa are the highest of any TAFIa-catalyzed reaction with a biological substrate reported to date and suggest that plasmin-modified fibrin is a primary physiological substrate for TAFIa. We also show that the catalytic efficiency of cleavage of all C-terminal lysine residues, whether they are involved in plasminogen binding or not, is 1.10 μm(-1) s(-1). Interestingly, this value increases to 3.85 μm(-1) s(-1) in the presence of Glu-Pg. These changes are due to a decrease in K(m). This suggests that an interaction between TAFIa and plasminogen comprises a component of the reaction mechanism, the plausibility of which was established by showing that TAFIa binds both Glu-Pg and Lys-Pg.  相似文献   

8.
Lipoprotein(a) [Lp(a)], but not low-density lipoprotein (LDL), was previously shown to impair the generation of fibrin-bound plasmin [Rouy et al. (1991) Arterioscler. Thromb. 11, 629-638] by a mechanism involving binding of Lp(a) to fibrin. It was therefore suggested that the binding was mediated by apolipoprotein(a) [apo(a)], a glycoprotein absent from LDL which has a high degree of homology with plasminogen, the precursor of the fibrinolytic enzyme plasmin. Here we have evaluated this hypothesis by performing comparative fibrin binding studies using a recombinant form of apo(a) containing 17 copies of the apo(a) domain resembling kringle 4 of plasminogen, native Lp(a), and Glu-plasminogen (Glu1-Asn791). Attempts were also made to identify the kringle domains involved in such interactions using isolated elastase-derived plasminogen fragments. The binding experiments were performed using a well-characterized model of an intact and of a plasmin-digested fibrin surface as described by Fleury and Anglés-Cano [(1991) Biochemistry 30, 7630-7638]. Binding of r-apo(a) to the fibrin surfaces was of high affinity (Kd = 26 +/- 8.4 nM for intact fibrin and 7.7 +/- 4.6 nM for plasmin-degraded fibrin) and obeyed the Langmuir equation for adsorption at interfaces. The binding to both surfaces was inhibited by the lysine analogue AMCHA and was completely abolished upon treatment of the degraded surface with carboxypeptidase B, indicating that r-apo(a) binds to both the intrachain lysines of intact fibrin and the carboxy-terminal lysines of degraded fibrin. As expected from these results, both r-apo(a) and native Lp(a) inhibited the binding of Glu-plasminogen to the fibrin surfaces.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
JMJD2A is a histone lysine demethylase which recognizes and demethylates H3K9me3 and H3K36me3 residues and is overexpressed in various cancers. It utilizes a tandem tudor domain to facilitate its own recruitment to histone sites, recognizing various di- and tri-methyl lysine residues with moderate affinity. In this study, we successfully engineered the tudor domain of JMJD2A to specifically bind to H4K20me3 with a 20-fold increase of affinity and improved selectivity. To reveal the molecular basis, we performed molecular dynamics and free energy decomposition analysis on the human JMJD2A tandem tudor domains bound to H4K20me2, H4K20me3, and H3K23me3 peptides to uncover the residues and conformational changes important for the enhanced binding affinity and selectivity toward H4K20me2/3. These analyses revealed new insights into understanding chromatin reader domains recognizing histone modifications and improving binding affinity and selectivity of these domains. Furthermore, we showed that the tight binding of JMJD2A to H4K20me2/3 is not sufficient to improve the efficiency of CRISPR-CAS9 mediated homology directed repair (HDR), suggesting a complicated relationship between JMJD2A and the DNA damage response beyond binding affinity toward the H4K20me2/3 mark.  相似文献   

10.
The binding of tissue-type plasminogen activator (t-PA) to fibrin is mediated both by its finger domain and by its kringle-2 domain. In this report, we investigate the relative affinities of these domains for lysine. Human recombinant t-PA deletion-mutant proteins were prepared and their ability to bind to lysine-Sepharose was investigated. Mutants containing the kringle-2 domain bound to lysine-Sepharose, whereas mutants lacking this domain but containing the finger domain, the epidermal growth factor domain or the kringle-1 domain did not bind to lysine-Sepharose. Mutant proteins containing the kringle-2 domain could be specifically eluted from lysine-Sepharose with epsilon-amino caproic acid. This lysine derivative also abolished fibrin binding by the kringle-2 domain but had no effect on the fibrin-binding property of the finger domain. Thus, a lysine-binding site is involved in the interaction of the kringle-2 domain with fibrin but not in the interaction of the finger domain with fibrin. The implications of the nature of these two distinct interactions of t-PA with fibrin on plasminogen activation by t-PA will be discussed.  相似文献   

11.
The Ca(2+)-dependent phospholipid-binding protein annexin II heterotetramer (AIIt) is composed of two copies of annexin II and a p11 dimer. The interaction of the carboxyl-terminal lysine residues of the p11 subunit of AIIt with the lysine-binding kringle domains of plasminogen is believed to play a key role in plasminogen binding and stimulation of the tPA-catalyzed cleavage of plasminogen to plasmin. In the current report, we show that AIIt-stimulated plasminogen activation is regulated by basic carboxypeptidases, in vitro. The incubation of AIIt with a 1/400 molar ratio of carboxypeptidase B for periods as short as 2 min resulted in a significant loss in AIIt-stimulated plasminogen activation. Carboxypeptidase B (CpB) as well as thrombin-activated fibrinolysis inhibitor (TAFIa) and carboxypeptidase N (CpN) rapidly reduced AIIt-stimulated plasminogen activation by 80%. The molar ratio of carboxypeptidase/AIIt for half-maximal inhibition of AIIt was 1/4700, 1/700, and 1/500 for CpB, TAFIa, and CpN, respectively. Treatment of AIIt with carboxypeptidase resulted in loss of both carboxyl-terminal lysine residues from the p11 subunit, which correlated with a decrease in the k(cat) and an increase in the K(m) for plasminogen activation. The data reveal a novel mechanism for the regulation of AIIt-stimulated plasminogen activation.  相似文献   

12.
Previous work using soluble fibrin surrogates or very dilute fibrin indicate that inhibition of plasmin by antiplasmin is attenuated by fibrin surrogates; however, this phenomenon has not been quantified within intact fibrin clots. Therefore, a novel system was designed to measure plasmin inhibition by antiplasmin in real time within an intact clot during fibrinolysis. This was accomplished by including the plasmin substrate S2251 and a recombinant fluorescent derivative of plasminogen (S741C-fluorescein) into clots formed from purified components. Steady state plasmin levels were estimated from the rates of S2251 hydrolysis, the rates of plasminogen activation were estimated by fluorescence decrease over time, and residual antiplasmin was deduced from residual fluorescence. From these measurements, the second order rate constant could be inferred at any time during fibrinolysis. Immediately after clot formation, the rate constant for inhibition decreased 3-fold from 9.6 x 10(6) m(-1) s(-1) measured in a soluble buffer system to 3.2 x 10(6) m(-1) s(-1) in an intact fibrin clot. As the clot continued to lyse, the rate constant for inhibition continued to decrease by 38-fold at maximum. To determine whether this protection was the result of plasmin exposure of carboxyl-terminal lysine residues, clots were formed in the presence of activated thrombin-activatable fibrinolysis inhibitor (TAFIa). In the presence of TAFIa, the initial protective effect associated with clot formation occurred; however, the secondary protective effect associated with lysine residue exposure was delayed in a TAFIa concentration-dependent manner. This latter effect represents another mechanism whereby TAFIa attenuates fibrinolysis.  相似文献   

13.
The crystal structure of the kringle 2 domain of tissue plasminogen activator was determined and refined at a resolution of 2.43 A. The overall fold of the molecule is similar to that of prothrombin kringle 1 and plasminogen kringle 4; however, there are differences in the lysine binding pocket, and two looping regions, which include insertions in kringle 2, take on very different conformations. Based on a comparison of the overall structural homology between kringle 2 and kringle 4, a new sequence alignment for kringle domains is proposed that results in a division of kringle domains into two groups, consistent with their proposed evolutionary relation. The crystal structure shows a strong interaction between a lysine residue of one molecule and the lysine/fibrin binding pocket of a noncrystallographically related neighbor. This interaction represents a good model of a bound protein ligand and is the first such ligand that has been observed in a kringle binding pocket. The structure shows an intricate network of interactions both among the binding pocket residues and between binding pocket residues and the lysine ligand. A lysine side chain is identified as the positively charged group positioned to interact with the carboxylate of lysine and lysine analogue ligands. In addition, a chloride ion is located in the kringle-kringle interface and contributes to the observed interaction between kringle molecules.  相似文献   

14.
We recently discovered several nonlysine-analog conformational modulators for plasminogen. These include SMTP-6, thioplabin B and complestatin that are low molecular mass compounds of microbial origin. Unlike lysine-analog modulators, which increase plasminogen activation but inhibit its binding to fibrin, the nonlysine-analog modulators enhance both activation and fibrin binding of plasminogen. Here we show that some nonlysine-analog modulators promote autoproteolytic generation of plasmin(ogen) derivatives with its catalytic domain undergoing extensive fragmentation (PMDs), which have angiostatin-like anti-endothelial activity. The enhancement of urokinase-catalyzed plasminogen activation by SMTP-6 was followed by rapid inactivation of plasmin due to its degradation mainly in the catalytic domain, yielding PMD with a molecular mass ranging from 68 to 77 kDa. PMD generation was observed when plasmin alone was treated with SMTP-6 and was inhibited by the plasmin inhibitor aprotinin, indicating an autoproteolytic mechanism in PMD generation. Thioplabin B and complestatin, two other nonlysine-analog modulators, were also active in producing similar PMDs, whereas the lysine analog 6-aminohexanoic acid was inactive while it enhanced plasminogen activation. Peptide sequencing and mass spectrometric analyses suggested that plasmin fragmentation was due to cleavage at Lys615-Val616, Lys651-Leu652, Lys661-Val662, Lys698-Glu699, Lys708-Val709 and several other sites mostly in the catalytic domain. PMD was inhibitory to proliferation, migration and tube formation of endothelial cells at concentrations of 0.3-10 microg.mL(-1). These results suggest a possible application of nonlysine-analog modulators in the treatment of cancer through the enhancement of endogenous plasmin(ogen) fragment formation.  相似文献   

15.
V Gurewich 《Enzyme》1988,40(2-3):97-108
Single chain urokinase (SC-UK) is a precursor of 55 kd two-chain UK (TC-UK). Treatment with catalytic proportions of plasmin or kallikrein converts SC-UK to TC-UK as a consequence of cleavage of its Lys158-Ile159 peptide bond. This plasmin-mediated activation of SC-UK induces a positive feedback secondary reaction and complicates measurement of its activity against its natural substrate, Glu-plasminogen. The fibrin-selective effect of pro-UK-induced clot lysis is not related to fibrin binding. Rather, a conformational change in Glu-plasminogen, conferred when it binds to certain carboxy-terminal lysine residues on fibrin, has been implicated in this mechanism. This is complementary to t-PA. Fibrin-bound t-PA was found to exclusively activate plasminogen bound to certain internal lysine residues. Their complementariness is believed to explain their synergism in fibrinolysis.  相似文献   

16.
R A Bok  W F Mangel 《Biochemistry》1985,24(13):3279-3286
The binding of human Glu- and Lys-plasminogens to intact fibrin clots, to lysine-Sepharose, and to fibrin cleaved by plasmin was quantitatively characterized. On intact fibrin clots, there was one strong binding site for Glu-plasminogen with a dissociation constant, Kd, of 25 microM and one strong binding site for Lys-plasminogen with a Kd of 7.9 microM. In both cases, the number of plasminogen binding sites per fibrin monomer was 1. Also, a much weaker binding site for Glu-plasminogen was observed with a Kd of about 350 microM. Limited digestion of fibrin by plasmin created additional binding sites for plasminogen with Kd values similar to the binding of plasminogen to lysine-Sepharose. This was predictable given the observations that plasminogen binds to lysine-Sepharose and can be eluted with epsilon-aminocaproic acid [Deutsch, D.G., & Mertz, E.T. (1970) Science (Washington, D.C.) 170, 1095-1096] and that plasmin preferentially cleaves fibrin at the carboxy side of lysyl residues [Weinstein, M.J., & Doolittle, R.F. (1972) Biochim. Biophys. Acta 258, 577-590], because the structures of the lysyl moiety in lysine-Sepharose and of epsilon-aminocaproic acid are identical with the structure of a COOH-terminal lysyl residue created by plasmin cleavage of fibrin. The Kd for the binding of Glu-plasminogen to lysine-Sepharose was 43 microM and for fibrin partially cleaved by plasmin 48 microM. The Kd for the binding of Lys-plasminogen to lysine-Sepharose was 30 microM. With fibrin partially cleaved by plasmin, there were two types of binding sites for Lys-plasminogen, one with a Kd of 7.6 microM and the other with a Kd of 44 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP). The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg) on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation.  相似文献   

18.
In a previous report we showed that plasmin-dependent lysis of a fibrin polymer, produced from purified components, was totally blocked if annexin II heterotetramer (AIIt) was present during fibrin polymer formation. Here, we show that AIIt inhibits fibrin clot lysis by stimulation of plasmin autodegradation, which results in a loss of plasmin activity. Furthermore, the C-terminal lysine residues of its p11 subunit play an essential role in the inhibition of fibrin clot lysis by AIIt. We also found that AIIt binds to fibrin with a K(d) of 436 nm and a stoichiometry of about 0.28 mol of AIIt/mol of fibrin monomer. The binding of AIIt to fibrin was not dependent on the C-terminal lysines of the p11 subunit. Furthermore, in the presence of plasminogen, the binding of AIIt to fibrin was increased to about 1.3 mol of AIIt/mol of fibrin monomer, suggesting that AIIt and plasminogen do not compete for identical sites on fibrin. Immunohistochemical identification of p36 and p11 subunits of AIIt in a pathological clot provides important evidence for its role as a physiological fibrinolytic regulator. These results suggest that AIIt may play a key role in the regulation of plasmin activity on the fibrin clot surface.  相似文献   

19.
A novel triple-kringle plasminogen activator protein, PK1 delta FE1X, has been produced which is a genetic chimera between the fibrin binding kringle 1 domain of plasminogen and the two kringles and serine protease domains of naturally occurring wild-type tissue plasminogen activator (wt t-PA). This chimera also contains a modification to prevent high mannose type N-linked glycosylation on kringle 1 of t-PA. PK1 delta FE1X is biochemically and fibrinolytically similar to wt t-PA in vitro but retains the decreased plasma clearance rate characteristic of other t-PA variants which lack fibronectin finger-like and epidermal growth factor domains. The serine protease domain of PK1 delta FE1X exhibits the amidolytic activity characteristic of wt t-PA. In an indirect coupled plasminogen activator assay, the specific activity of PK1 delta FE1X is approximately 1.4 times greater than that of wt t-PA. In a fibrin film-binding assay, greater binding to untreated fibrin is observed with wt t-PA than with PK1 delta FE1X. However, following limited plasmin digestion of the fibrin film, PK1 delta FE1X binding increases to the level observed with wt t-PA. The incremental binding to plasmin-digested fibrin observed with PK1 delta FE1X is eliminated if plasmin digestion of the fibrin film is followed by carboxypeptidase B treatment. This result suggests that plasminogen kringle 1 binds plasmin-digested fibrin even after recombination with a heterologous protein. The fibrinolytic activity of PK1 delta FE1X in human plasma clot lysis assays was similar to that of wt t-PA at activator concentrations of approximately 1 microgram/ml. At substantially lower concentrations, approximately 0.1 microgram/ml, PK1 delta FE1X was only slightly less active than wt t-PA. Pharmacokinetic analysis showed that wt t-PA activity is cleared approximately 15 times as rapidly as PK1 delta FE1X following intravenous bolus injection. In a rabbit jugular vein clot lysis model, intravenous bolus injection of 0.06 mg/kg of PK1 delta FE1X showed greater thrombolytic potency than a similar administration of 0.5 mg/kg of wt t-PA. Thus it appears that in vitro exon shuffling techniques can be used to generate novel fibrinolytic agents which biochemically and pharmacologically represent the combination of individual domains of naturally occurring proteins.  相似文献   

20.
V Fleury  E Anglés-Cano 《Biochemistry》1991,30(30):7630-7638
In the present study we have quantitatively characterized the interaction of purified human Glu- and Lys-plasminogen with intact and degraded fibrin by ligand-binding experiments using a radioisotopic dilution method and antibodies against human plasminogen. A fibrinogen monolayer was covalently linked to a solid support with polyglutaraldehyde and was treated with thrombin or with thrombin and then plasmin to respectively obtain intact and degraded fibrin surfaces. Under these conditions, a well-defined surface of fibrin is obtained (410 +/- 4 fmol/cm2) and, except for a 39-kDa fragment, most of the fibrin degradation products remain bound to the support. New binding sites for plasminogen were detected on the degraded surface of fibrin. These sites were identified as carboxy-terminal lysine residues both by inhibition of the binding by the lysine analogue 6-aminohexanoic acid and by carboxy-terminal end-group digestion with carboxypeptidase B. The binding curves exhibited a characteristic Langmuir adsorption isotherm saturation profile. The data were therefore analyzed accordingly, assuming a single-site binding model to simplify the analysis. Equilibrium dissociation constants (Kd) and the maximum number of binding sites (Bmax) were derived from linearized expression of the Langmuir isotherm equation. The Kd for the binding of Glu-plasminogen to intact fibrin was 0.99 +/- 0.17 microM and for degraded fibrin was 0.66 +/- 0.22 microM. The Kd for the binding of Lys-plasminogen to intact fibrin was 0.41 +/- 0.22 microM and for degraded fibrin was 0.51 +/- 0.12 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号