首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The African brood parasitic finches (Vidua spp.) are host specialists that mimic the songs and nestling mouth markings of their finch hosts (family Estrildidae). Although recent molecular analyses suggest rapid speciation associated with host switches in some members of this group, the association of different Vidua lineages with particular host genera suggests the possibility of cospeciation at higher levels in the host and parasite phylogenies. We compared a phylogeny of all Vidua species with a phylogeny of their estrildid finch hosts and compared divergence time estimates for the two groups. Basal divergences among extant members of the Vidulidae and among Vidua species are more recent than those among host genera and species, respectively, allowing a model of cospeciation to be rejected at most or all levels of the Vidua phylogeny. Nonetheless, some tests for cospeciation indicated significant congruence between host and parasite tree topologies. This result may be an artifact of clade-limited colonization. Host switches in parasitic finches have most often involved new hosts in the same or a closely related genus, an effect that increases the apparent congruence of host and parasites trees.  相似文献   

2.
Robust phylogenies for brood-parasitic birds, their hosts, and nearest nesting relatives provide the framework to address historical questions about host-parasite coevolution and the origins of parasitic behavior. We tested phylogenetic hypotheses for the two genera of African brood-parasitic finches, Anomalospiza and Vidua, using mitochondrial DNA sequence data from 43 passeriform species. Our analyses strongly support a sister relationship between Vidua and Anomalospiza, leading to the conclusion that obligate brood parasitism evolved only once in African finches rather than twice, as has been the conventional view. In addition, the parasitic finches (Viduidae) are not recently derived from either weavers (Ploceidae) or grassfinches (Estrildidae), but represent a third distinct lineage. Among these three groups, the parasitic finches and estrildids, which includes the hosts of all 19 Vidua species, are sister taxa in all analyses of our full dataset. Many characters shared by Vidua and estrildids, including elaborate mouth markings in nestlings, unusual begging behavior, and immaculate white eggs, can therefore be attributed to common ancestry rather than convergent evolution. The host-specificity of mouth mimicry in Vidua species, however, is clearly the product of subsequent host-parasite coevolution. The lineage leading to Anomalospiza switched to parasitizing more distantly related Old World warblers (Sylviidae) and subsequently lost these characteristics. Substantial sequence divergence between Vidua and Anomalospiza indicates that the origin of parasitic behavior in this clade is ancient (approximately 20 million years ago), a striking contrast to the recent radiation of extant Vidua. We suggest that the parasitic finch lineage has experienced repeated cycles of host colonization, speciation, and extinction through their long history as brood parasites and that extant Vidua species represent only the latest iterations of this process. This dynamic process may account for a significantly faster rate of DNA sequence evolution in parasitic finches as compared to estrildids and other passerines. Our study reduces by one the tally of avian lineages in which obligate brood parasitism has evolved and suggests an origin of parasitism that involved relatively closely related species likely to accept and provide appropriate care to parasitic young. Given the ancient origin of parasitism in African finches, ancestral estrildids must have been parasitized well before the diversification of extant Vidua, suggesting a long history of coevolution between these lineages preceding more recent interactions between specific hosts and parasites.  相似文献   

3.
Brood parasitic birds, their foster species and their ectoparasites form a complex coevolving system composed of three hierarchical levels. However, effects of hosts’ brood parasitic life‐style on the evolution of their louse (Phthiraptera: Amblycera, Ischnocera) lineages have never been tested. We present two phylogenetic analyses of ectoparasite richness of brood parasitic clades. Our hypothesis was that brood parasitic life‐style affects louse richness negatively across all avian clades due to the lack of vertical transmission routes. Then, narrowing our scope to brood parasitic cuckoos, we explored macroevolutionary factors responsible for the variability of their louse richness. Our results show that taxonomic richness of lice is lower on brood parasitic clades than on their nonparasitic sister clades. However, we found a positive covariation between the richness of cuckoos’ Ischnoceran lice and the number of their foster species, possibly due to the complex and dynamic subpopulation structure of cuckoo species that utilize several host species. We documented diversity interactions across a three‐level host parasite system and we found evidence that brood parasitism has opposing effects on louse richness at two slightly differing macroevolutionary scales, namely the species richness and the genera richness.  相似文献   

4.
The louse genera Brueelia (Ischnocera) and Myrsidea (Amblycera) are broadly codistributed on songbirds (Passeriformes), but differ in a variety of life history characteristics. We used mitochondrial and nuclear DNA sequences to assess levels of genetic divergence and reconstruct phylogenies of these 2 genera, focusing especially on Catharus thrushes in North America. We then qualitatively compared the phylogenies and levels of divergence within these 2 genera of codistributed parasites. Neither Brueelia nor Myrsidea appears to cospeciate with Catharus thrushes or passerine birds in general. The Myrsidea phylogeny exhibits significant levels of biogeographic structure, whereas the Brueelia phylogeny does not. Myrsidea and Brueelia also differ in their levels of intra-generic genetic divergence, with Myrsidea showing higher levels of genetic divergence and host specificity than Brueelia. Our genetic data support traditional morphology-based taxonomy in several instances in which the same species of Brueelia has been reported on multiple host taxa, e.g., all migrant Catharus spp. carry B. antiqua, with little haplotype divergence. Myrsidea found on each Catharus sp. are in general genetically distinct, except for M. incerta, which parasitizes both Catharus ustulatus and Catharus minimus. The strong biogeographic signal in the Myrsidea phylogeny and higher relative levels of host specificity of Myrsidea spp. suggest that infrequent host-switching, followed by speciation, is shaping the evolutionary history of this group. In contrast, the relatively lower host specificity of Brueelia spp. suggests that host-switching, combined with more frequent ongoing dispersal, has been more important in the evolutionary history of Brueelia.  相似文献   

5.
The species-specific associations of the African brood parasitic finches Vidua with their estrildid finch host species may have originated by cospeciation with the host species or by later colonizations of new hosts. Predictions of these alternative models were tested in two species groups of brood parasites (indigobirds, paradise whydahs) and their hosts. Phylogenetic analyses suggested that the brood parasites and their hosts did not speciate in parallel. The parasitic indigobirds share mitochondrial haplotypes with each other, and species limits in both indigobirds and paradise whydahs do not correspond with their gene trees. Different parasite species within a region are more closely related to each other than any is to parasites that are associated with its same host species in other regions of Africa. There is little genetic difference between parasite species D?i,j < 0.001 in the indigobirds, D?i,j = 0.01 in the whydahs). Genetic distances D?i,j between the parasite species are less than the genetic distances between their corresponding host species in all parasite-host comparisons, and average only 7.2% as large in the indigobirds as in their hosts and 42% as large in the paradise whydahs as in their hosts. A phylogenetic model that allows ancestral haplotype polymorphisms to be retained in descendant species was compared to a constraint model of species monophyly requiring all but the one ancestral haplotype to be independently derived within each species. The constraint model increases the length of the indigobird tree by 50% over that of the model of retained ancestral polymorphisms; the difference is statistically significant. Both phylogenetic and distance analyses indicate that the brood parasites have become associated with their host species through host switches and independent colonizations of the hosts, rather than through parallel cospeciation with them. The molecular genetic results are supported by recent discoveries of additional host species that are associated with the indigobirds in the field and by variation in the species-specific song behaviors of the brood parasites.  相似文献   

6.
Brood parasitic birds impose variable fitness costs upon their hosts by causing the partial or complete loss of the hosts' own brood. Growing evidence from multiple avian host-parasite taxa indicates that exposure of individual hosts to parasitism is not necessarily random and varies with habitat use, nest-site selection, age or other phenotypic attributes. For instance, nonrandom patterns of brood parasitism had similar evolutionary consequences to those of limited horizontal transmission of parasites and pathogens across space and time and altered the dynamics of both population productivity and co-evolutionary interactions of hosts and parasites. We report that brood parasitism status of hosts of brown-headed cowbirds Molothrus ater is also transmitted across generations in individually colour-banded female prothonotary warblers Protonotaria citrea. Warbler daughters were more likely to share their mothers' parasitism status when showing natal philopatry at the scale of habitat patch. Females never bred in their natal nestboxes but daughters of parasitized mothers had shorter natal dispersal distances than daughters of nonparasitized mothers. Daughters of parasitized mothers were more likely to use nestboxes that had been parasitized by cowbirds in both the previous and current years. Although difficult to document in avian systems, different propensities of vertical transmission of parasitism status within host lineages will have critical implications both for the evolution of parasite tolerance in hosts and, if found to be mediated by lineages of parasites themselves, for the difference in virulence between such extremes as the nestmate-tolerant and nestmate-eliminator strategies of different avian brood parasite species.  相似文献   

7.
Coevolution is often invoked as an engine of biological diversity. Avian brood parasites and their hosts provide one of the best-known examples of coevolution. Brood parasites lay their eggs in the nests of other species, selecting for host defences and reciprocal counteradaptations in parasites. In theory, this arms race should promote increased rates of speciation and phenotypic evolution. Here, we use recently developed methods to test whether the three largest avian brood parasitic lineages show changes in rates of phenotypic diversity and speciation relative to non-parasitic lineages. Our results challenge the accepted paradigm, and show that there is little consistent evidence that lineages of brood parasites have higher speciation or extinction rates than non-parasitic species. However, we provide the first evidence that the evolution of brood parasitic behaviour may affect rates of evolution in morphological traits associated with parasitism. Specifically, egg size and the colour and pattern of plumage have evolved up to nine times faster in parasitic than in non-parasitic cuckoos. Moreover, cuckoo clades of parasitic species that are sympatric (and share similar host genera) exhibit higher rates of phenotypic evolution. This supports the idea that competition for hosts may be linked to the high phenotypic diversity found in parasitic cuckoos.  相似文献   

8.
Cophylogenetic relationships between penguins and their chewing lice   总被引:4,自引:0,他引:4  
It is generally thought that the evolution of obligate parasites should be linked intimately to the evolution of their hosts and that speciation by the hosts should cause speciation of their parasites. The penguins and their chewing lice present a rare opportunity to examine codivergence between a complete host order and its parasitic lice. We estimated a phylogeny for all 15 species of lice parasitising all 17 species of penguins from the third domain of the mitochondrial 12S ribosomal rRNA gene, a portion of the mitochondrial cytochrome oxidase subunit 1 gene and 55 morphological characters. We found no evidence of extensive cospeciation between penguins and their chewing lice using TreeMap 2.02beta. Despite the paucity of cospeciation, there is support for significant congruence between the louse and penguin phylogenies due to possible failure to speciate events (parasites not speciating in response to their hosts speciating).  相似文献   

9.
Each summer thousands of nesting birds feed cuckoo chicks that have killed the hosts' own young. Likewise, worker ants rear the brood of other ants that have killed the workers' queen or even induced the workers to kill their queen themselves. In both cases the hosts spend time and energy raising offspring that, to them, are of no genetic value. Such exploitation involves intricate parasitic adaptations for deceiving hosts. It should also provoke host defences. Brood and social parasites and their hosts therefore provide excellent opportunities for the study of evolutionary arms races.  相似文献   

10.
Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity.  相似文献   

11.
Brood-parasitic village indigobirds, Vidua chalybeata, were bred in captivity and foster-reared by their normal host species, the red-billed firefinch, Lagonosticta senegala, or by an experimental foster species, the Bengalese finch, Lonchura striata. Captive-reared female indigobirds were tested as adults for mate choice and for host choice. In tests of mate choice, female indigobirds responded preferentially towards mimicry songs of male indigobirds that were similar to those of the females' own foster parents. Females reared by Bengalese finches responded to male songs that mimicked Bengalese finch song rather than to male songs that mimicked their normal host species, the firefinch. In tests of host choice, females reared by Bengalese finches laid in the nests of Bengalese finches, and females reared by firefinches laid in the nests of firefinches. Wild-caught females showed the same behaviours as captive-bred females reared by firefinches. A female indigobird's social companions (firefinch or Bengalese) following her independence of her foster parents had no effect on her sexual response to male mimicry song or her choice of a host species in brood parasitism. The results support the predictions of a model of imprinting-like behaviour development in which young indigobirds focus their attention on their foster parents, rather than a model of innate bias for songs and nests of their normal host species, or a null model of nonspecific brood parasitism and differential survival. The results provide experimental support for the recent origin of brood parasite-host associations and the significance of imprinting in speciation in these brood parasites. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

12.
Compared with Europe and the Americas, the ectoparasites of African birds are poorly understood, despite the avian fauna being relatively well known. Notably, previous studies documenting the host associations and genetic diversity of parasitic chewing lice of southern African birds have been limited in geographic and taxonomic scope. Recent field expeditions exploring the avian diversity in South Africa facilitated an opportunity to obtain louse specimens from a taxonomically diverse host assemblage. This study is the first to investigate avian louse host associations and diversity across a large portion of South Africa encompassing several distinct habitat types, while incorporating molecular genetic data (from portions of the mitochondrial COI and nuclear EF‐1α genes) for ectoparasite phylogenetic analyses. From 1105 South African bird individuals and 170 species examined for lice, a total of 105 new louse–host associations were observed. Morphological and genetic examination of lice with these new host associations reveals a maximum of 66 louse species new to science. Results of this study support the observation that examining museum specimens is a useful way to investigate louse diversity and host associations.  相似文献   

13.
Host parents exhibit a variety of behaviors toward avian brood parasites, but not all of their actions have necessarily evolved in response to costs imposed by parasites. To investigate whether common waxbills (Estrilda astrild) have evolved defenses specifically against parasitic pin-tailed whydahs (Vidua macroura), I studied the specificity and flexibility of host behaviors toward nestlings at two sites that differed significantly in parasitism rates and intensities. I focused on documenting nestling survival because V. macroura young match the elaborate gape morphology of E. astrild nestlings, a pattern that suggests hosts may possess unique defenses against parasite chicks. Parasite young survived significantly worse than host young in mixed broods. However, this apparent discrimination was not associated with parasitism risk as would be expected if defenses had evolved specifically to counter parasitism. Parasite young may have survived poorly compared to host young because individual chicks were less able to stimulate sufficient care from foster parents or because they were more susceptible to nestling competition, disease, or reduced provisioning by hosts. Mortality may have also been exacerbated by poor timing of parasite egg laying. In nonparasitized and parasitized nests, rates of nestling survival were similar, further suggesting that parenting behaviors that result in chick mortality did not evolve solely in response to parasite young. In addition, orange-breasted waxbills (Amandava subflava) and zebra finches (Taeniopygia guttata), rarely parasitized and nonparasitized relatives of E. astrild, experience similar levels of nestling mortality presumably as a result of phylogenetically widespread parenting strategies. Despite the similarity of parasitic V. macroura nestlings and E. astrild nestlings, I found no evidence that E. astrild parents possess defenses that allow for specific discrimination against parasite chicks during the nestling period. Rather than being subject to host defenses evolved in an arms race, Vidua chicks may simply be imperfectly adapted to life in the nests of their hosts.  相似文献   

14.
Animals frequently host organisms on their surface which can be beneficial, have no effect or a negative effect on their host. Ectoparasites, by definition, are those which incur costs to their host, but these costs may vary. Examples of avian ectoparasites are chewing lice which feed exclusively on dead feather or skin material; therefore, costs to their bird hosts are generally considered small. Theoretically, many possible proximate effects exist, like loss of tissue or food, infected bites, transmission of microparasitic diseases or reduced body insulation due to loss of feathers, which may ultimately also have fitness consequences. Here, we experimentally examined a possible negative impact of 2 feather-eating louse species (Meropoecus meropis and Brueelia apiastri) on male and female European bee-eaters (Merops apiaster) by removing or increasing louse loads and comparing their impact to a control group (lice removed and immediately returned) after 1 month. A negative effect of chewing lice was found on body mass and sedimentation rate and to a lesser extent on haematocrit levels. Males and females lost more weight when bearing heavy louse loads, and were more susceptible to infestations as indicated by the higher sedimentation rate. Our results further suggest differences in sex-specific susceptibility.  相似文献   

15.
Although most parasites show at least some degree of host specificity, factors governing the evolution of specificity remain poorly understood. Many different groups of host-specific parasites show a striking correlation between parasite and host body size, suggesting that size reinforces specificity. We tested this hypothesis by measuring the relative fitness of host-specific feather lice transferred to pigeons and doves that differ in size by an order of magnitude. To test the general influence of size, we transferred unrelated groups of wing and body lice, which are specialized for different regions of the host. Lice were transferred in both directions, from a large native host species, the rock pigeon (Columba livia), to several progressively smaller hosts, and from a small native host species, the common ground dove (Columbina passerina), to several larger hosts. We measured the relative fitness (population size) of lice transferred to these novel host species after two louse generations. Neither wing lice nor body lice could survive on novel host species that were smaller in size than the native host. However, when host defense (preening behavior) was blocked, both groups survived and reproduced on all novel hosts tested. Thus, host defense interacted with host size to govern the ability of lice to establish on small hosts. Neither wing lice nor body lice could survive on larger hosts, even when preening was blocked. In summary, host size influenced the fitness of both types of feather lice, but through different mechanisms, depending on the direction of the transfer. Our results indicate that host switching is most likely between hosts of similar body size. This finding has important implications for studies of host-parasite coevolution at both the micro- and macroevolutionary scales.  相似文献   

16.
We characterized 11 microsatellite primer pairs for the village indigobird Vidua chalybeata. The loci were highly polymorphic, with 7–13 alleles per locus. Gene diversity, estimated as expected heterozygosity, ranged from 0.52 to 0.86, and was generally matched by levels of observed heterozygosity (0.49–0.91). Many of these primer pairs amplified polymorphic loci in cross‐species amplification trials with a variety of estrildid and ploceid finches and a sparrow, Passer griseus. These primers will be valuable for genetic analyses of the brood parasitic indigobirds and whydahs (genus Vidua) as well as other Old World finches.  相似文献   

17.
Brood-parasitic finches Vidua spp. mimic songs of their foster species, with most Vidua species both mimicking songs and parasitizing nests of a single estrildid finch species. We describe a behavioural radiation in the Cameroon Indigobird Vidua camerunensis . Local populations are polymorphic in behaviour, each male mimicking songs of a single species, with certain males mimicking songs of one species and other males mimicking songs of another host species. The species most often mimicked in song are Black-bellied Firefinch Lagonosticta rara and African Firefinch L. rubricata ; other species mimicked in song are Brown Twinspot Clytospiza monteiri and Dybowski's Twinspot Euschistospiza dybowskii . Indigobirds in the different mimicry song populations do not differ morphologically in plumage colour or size. The lack of morphological differences between male indigobirds with different mimicry songs is consistent with a recent behavioural radiation through host shifts, perhaps facilitated by environmental change associated with prehistoric cultivation of grain. The mimicry song populations of indigobirds, behaviourally imprinted upon different host species, support the idea of a process of speciation driven by a shift to new host species.  相似文献   

18.
The taxonomy of lice (Insecta: Phthiraptera) is often heavily influenced by host taxonomy. The use of host information to define genera of avian lice in the widespread Degeeriella complex has been prevalent but has created problems. Several workers have suggested that genera defined on the basis of host association are not monophyletic. We used sequences of nuclear (elongation factor-1alpha) and mitochondrial (cytochrome oxidase I) genes to test the monophyly of several genera in the Degeeriella complex. Parsimony and likelihood analyses of these data indicated that many genera in the Degeeriella complex are not monophyletic, such that species occurring on the same host groups do not form monophyletic groups. Biological features of hosts (including predaceous habits, brood parasitism, and hole nesting) for species in the Degeeriella complex likely provide opportunities for switching of lice between host groups. In addition, dispersal of lice via phoresy on hippoboscid flies also likely provides opportunities for host switching in the Degeeriella complex. This study indicates that the overuse of host taxonomy in louse taxonomy can result in classifications that do not reflect phylogenetic history.  相似文献   

19.
Mimicry of a harmless model (aggressive mimicry) is used by egg, chick and fledgling brood parasites that resemble the host''s own eggs, chicks and fledglings. However, aggressive mimicry may also evolve in adult brood parasites, to avoid attack from hosts and/or manipulate their perception of parasitism risk. We tested the hypothesis that female cuckoo finches (Anomalospiza imberbis) are aggressive mimics of female Euplectes weavers, such as the harmless, abundant and sympatric southern red bishop (Euplectes orix). We show that female cuckoo finch plumage colour and pattern more closely resembled those of Euplectes weavers (putative models) than Vidua finches (closest relatives); that their tawny-flanked prinia (Prinia subflava) hosts were equally aggressive towards female cuckoo finches and southern red bishops, and more aggressive to both than to their male counterparts; and that prinias were equally likely to reject an egg after seeing a female cuckoo finch or bishop, and more likely to do so than after seeing a male bishop near their nest. This is, to our knowledge, the first quantitative evidence for aggressive mimicry in an adult bird, and suggests that host–parasite coevolution can select for aggressive mimicry by avian brood parasites, and counter-defences by hosts, at all stages of the reproductive cycle.  相似文献   

20.
Brood parasites use the parental care of others to raise their young and sometimes employ mimicry to dupe their hosts. The brood-parasitic finches of the genus Vidua are a textbook example of the role of imprinting in sympatric speciation. Sympatric speciation is thought to occur in Vidua because their mating traits and host preferences are strongly influenced by their early host environment. However, this alone may not be sufficient to isolate parasite lineages, and divergent ecological adaptations may also be required to prevent hybridization collapsing incipient species. Using pattern recognition software and classification models, we provide quantitative evidence that Vidua exhibit specialist mimicry of their grassfinch hosts, matching the patterns, colors and sounds of their respective host's nestlings. We also provide qualitative evidence of mimicry in postural components of Vidua begging. Quantitative comparisons reveal small discrepancies between parasite and host phenotypes, with parasites sometimes exaggerating their host's traits. Our results support the hypothesis that behavioral imprinting on hosts has not only enabled the origin of new Vidua species, but also set the stage for the evolution of host-specific, ecological adaptations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号