首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.  相似文献   

2.
Whereas the pathogenesis of atherosclerosis has been intensively studied and described, the underlying events that initiate cardiovascular disease are not yet fully understood. A substantial number of studies suggest that altered levels of oxidative and nitrosoxidative stress within the cardiovascular environment are essential in the development of cardiovascular disease; however, the impact of such changes on the subcellular or organellar components and their functions that are relevant to cardiovascular disease inception are less understood. In this regard, studies are beginning to show that mitochondria not only appear susceptible to damage mediated by increased oxidative and nitrosoxidative stress, but also play significant roles in the regulation of cardiovascular cell function. In addition, accumulating evidence suggests that a common theme among cardiovascular disease development and cardiovascular disease risk factors is increased mitochondrial damage and dysfunction. This review discusses aspects relating mitochondrial damage and function to cardiovascular disease risk factors and disease development.  相似文献   

3.
Due to the advanced development of fluorogenic chemistry, quantitative real-time polymerase chain reaction (qRT-PCR) has become an emerging technique for the detection and quantification of microorganisms in the environment. Compared with the conventional hybridization- and PCR-based techniques, qRT-PCR not only has better sensitivity and reproducibility, but it is also quicker to perform and has a minimum risk of amplicon carryover contamination. This article reviews the principle of this emerging technique, its detection reagents, target DNAs, quantification procedures, and affecting factors. The applications of qRT-PCR for the quantification of microorganisms in the environment are also summarized.  相似文献   

4.
The transgenic traits associated with the majority of commercial genetically modified crops are focused on improving herbicide and insecticide management practices. The use of the transgenic technology in these crops and the associated chemistry has been the basis of studies that provide evidence for occasional improvement in environmental benefits due to the use of less residual herbicides, more targeted pesticides, and reduced field traffic. This is nicely exemplified through studies using Environmental Impact Quotient (EIQ) assessments. Whilst EIQ evaluations may sometimes illustrate environmental benefits they have their limitations. EIQ evaluations are not a surrogate for Environmental Risk Assessments and may not reflect real environmental interactions between crops and the environment. Addressing the impact cultivated plants have on the environment generally attracts little public attention and research funding, but the introduction of GM has facilitated an expansion of research to address potential environmental concerns from government, NGOs, industry, consumers, and growers. In this commentary, some evidence from our own research and several key papers that highlight EIQ assessments of the impact crops are having on the environment are presented. This information may be useful as an education tool on the potential benefits of GM and conventional farming. In addition, other deliberate, accidental, and GM-driven benefits derived from the examination of GM cropping systems is briefly discussed.  相似文献   

5.
Restoring Nature,Without Mosquitoes?   总被引:1,自引:0,他引:1  
The benefits of wetlands are now widely appreciated. Less widely known is that historically many wetlands were drained to help control malaria and other deadly diseases. This essay's general theme is that there are pros and cons to restoration or creation of wetlands. The specific theme is that mosquitoes pose practical and theoretical problems. In particular, abundant mosquitoes should not be regarded as an after‐the‐fact surprising side effect but rather, abundant mosquitoes should be viewed as a primary and foreseeable effect of providing habitat suitable for them. Yet our funding mechanisms and educational institutions often fail properly to address the reality that restoring or creating wetlands has a downside.  相似文献   

6.
In the study of complexity, a new kind of explanation has been developed for social behaviour. It shows how patterns of social behaviour can arise as a side‐effect of the interaction of individuals with their social or physical environment (e.g. by self‐organization). This development may influence our ideas about the direct causation and evolution of social behaviour. Furthermore, it may influence our theories about the integration of different traits. This new method has been made possible by the increase in computing power. It is now applied in many areas of science, such as physics, chemistry, sociology and economics. However, in zoology and anthropology it is still rare. The major aim of this paper is to make this method more generally accepted among behavioural scientists.  相似文献   

7.
In keeping with the theme of this Yale-China symposium, we discuss some unexpected dividends which have been derived from the basic study of five viruses to which man has been exposed. Inquiring into the behavior of these viruses for their own sake has not only produced an increase in basic understanding of biologic processes, but has provided concepts and techniques which will broaden our knowledge of the etiology, pathogenesis, and treatment of human diseases which are unrelated to viruses.  相似文献   

8.
The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.  相似文献   

9.
With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.  相似文献   

10.
Plants use energy from sunlight to transform carbon dioxide from the air into complex organic molecules, ultimately producing much of the food we eat. To make this complex chemistry more efficient, plant leaves are intricately constructed in 3 dimensions: They are flat to maximise light capture and contain extensive internal air spaces to increase gas exchange for photosynthesis. Many years of work has built up an understanding of how leaves form flat blades, but the molecular mechanisms that control air space formation are poorly understood. Here, I review our current understanding of air space formation and outline how recent advances can be harnessed to answer key questions and take the field forward. Increasing our understanding of plant air spaces will not only allow us to understand a fundamental aspect of plant development, but also unlock the potential to engineer the internal structure of crops to make them more efficient at photosynthesis with lower water requirements and more resilient in the face of a changing environment.

Leaves are interwoven with large air spaces to increase the efficiency of photosynthesis; however, how these air spaces form and how different patterns have evolved is almost unknown. This Unsolved Mystery article discusses the existing evidence and poses new avenues of research to answer this question.  相似文献   

11.
12.
The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50) of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions.  相似文献   

13.
Bacterial behavior at surfaces   总被引:3,自引:0,他引:3  
Population level studies demonstrate that bacterial colonization of surfaces and subsequent biofilm architecture are controlled by a variety of factors that include the hydrodynamics, surface chemistry and genotype of the cell. New molecular tools now extend our ability to investigate among bacterial cells within a surface-associated population subtle phenotypic differences that do not involve changes in genotype. Such resolution has led to new discoveries in relationships between bacterial cells and their environment.  相似文献   

14.
Paternal investment theory and psychosocial acceleration theory hold that father absence and stressful experiences, respectively, accelerate reproductive development. Accumulating evidence is consistent with these theories yet important questions remain. In this study, we use a two-part structural equation model and data from 342 female undergraduates to address two of these questions: First, what is the role of father absence in female psychosocial acceleration, controlling potentially confounding aspects of environment and family structure? Second, to what extent does age at menarche mediate environmental and family structure effects on sexual debut? Findings indicated that many aspects of environment and family structure could be summarized with two factors—socio-economic status (SES) and fragmented family structure. We found that among those who had experienced sexual debut, exposure to temporary father departure (one year or more) in the context of an intact family hastened menarche, which in turn accelerated sexual debut. However, this type of father absence did not predict experience of sexual debut (or not). Fragmented family structure (which also implies some degree of father absence) appeared to increase the likelihood that participants had experienced sexual debut, but did not predict age at menarche or age at sexual debut among who had debuted. SES was not associated with any aspects of reproductive development, controlling for fragmented family structure and age. We discuss our findings in relation to paternal investment theory, psychosocial acceleration theory, and life history theory. We then lay out future directions for researchers aiming to clarify the role of environment in reproductive trajectories.  相似文献   

15.
The primary cilium is a small microtubule-based organelle projecting from the plasma membrane of practically all cells in the mammalian body. In the past 8 years, a flurry of papers has indicated a crucial role of this long-neglected organelle in the development of a wide variety of organs, including derivatives of all three germ layers. A common theme of these studies is the critical dependency of signal transduction of the Hedgehog pathway upon functionally intact cilia to regulate organogenesis. Another common theme is the role that the cilium plays, not necessarily in the determination of the embryonic anlagen of these organs, although this too occurs but rather in the proliferation and morphogenesis of the previously determined organ. We outline the various organ systems that are dependent upon primary cilia for their proper development and we discuss the cilia-dependent roles that Sonic and Indian Hedgehog play in these processes. In addition and most importantly for the field, we discuss the controversial involvement of another major developmental pathway, Wnt signaling, in cilia-dependent organogenesis.  相似文献   

16.
The fashion today is to disparage technology-led research but our view is that cell biologists, in particular, should be proud of their 'progress through technology'. The 'cell theory' itself, arguably the oldest cornerstone in the theoretical foundations of biology, emerged because Hooke, van Leeuwenhoek and others had, more than a century earlier, pioneered the enabling technology--the microscope. We develop this theme with reference to our own field of research: the locomotion of cultured tissue cells.  相似文献   

17.
18.
Chemical compounds are highly important in the ecology of animals. In social insects, compounds on the body surface represent a particularly interesting trait, because they comprise different compound classes that are involved in different functions, such as communication, recognition and protection, all of which can be differentially affected by evolutionary processes. Here, we investigate the widely unknown and possibly antagonistic influence of phylogenetic and environmental factors on the composition of the cuticular chemistry of tropical stingless bees. We chose stingless bees because some species are unique in expressing not only self-produced compounds, but also compounds that are taken up from the environment. By relating the cuticular chemistry of 40 bee species from all over the world to their molecular phylogeny and geographical occurrence, we found that distribution patterns of different groups of compounds were differentially affected by genetic relatedness and biogeography. The ability to acquire environmental compounds was, for example, highly correlated with the bees'' phylogeny and predominated in evolutionarily derived species. Owing to the presence of environmentally derived compounds, those species further expressed a higher chemical and thus functional diversity. In Old World species, chemical similarity of both environmentally derived and self-produced compounds was particularly high among sympatric species, even when they were less related to each other than to allopatric species, revealing a strong environmental effect even on largely genetically determined compounds. Thus, our findings do not only reveal an unexpectedly strong influence of the environment on the cuticular chemistry of stingless bees, but also demonstrate that even within one morphological trait (an insect''s cuticular profile), different components (compound classes) can be differentially affected by different drivers (relatedness and biogeography), depending on the functional context.  相似文献   

19.
Basic solutions are an indispensable part of our daily life. Basic solutions are commonly used in industries such as the textile industry, oil refineries, the fertilizer industry, and pharmaceutical products. Most cleaning agents, such as soap, detergent, and bleach, and some of our foods, such as chocolate and eggs, include bases. Bases are the fundamental concepts of chemistry. Indicators are chemical compounds that can be added to solution to determine whether it is a base or not. This article describes an activity whose primary aim is to teach base indicators to preservice elementary teachers. In this activity, the authors turned the traditional art of marbling into something achievable with the chemical substances that are the basic solutions and base indicators found in nearly all chemistry laboratories. Therefore, this activity can be called chemical marbling. The preservice elementary teachers learned the base indicators and basic solutions throughout this activity. The purpose of the study is not only to teach the science concepts to the preservice elementary teachers with fun but also to promote the development of their attitudes toward science, creativity, and aesthetic feelings. Suggestions stress that chemical marbling might be a good tool to acquire the preservice elementary teachers’ cognitive and affective learning outcomes.  相似文献   

20.
Methylbutenol is a 5-carbon alcohol that is produced and emitted by several species of pine in western North America, and may have important impacts on the tropospheric chemistry of this region. In the present study the response of methylbutenol basal emission rate (measured at a constant light intensity of 1500 µmol m−2 s−1 and temperature of 30 °C) to the light and temperature conditions of the growth environment was examined, using field-grown plants shielded with shade cloth of various densities. Methylbutenol basal emission rates increased linearly with the temperature of the growth environment but did not respond to the shading of foliage during growth and development. Both photosynthesis and basal methylbutenol emission rate declined in older needles; however, these declines appear to result from parallel but independent processes and not from basal MBO emission rate directly tracking photosynthetic rates. Older needles did not occupy cooler microenvironments within the canopy; and thus differing thermal microenvironment could not explain the reduced MBO emission in older needles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号