首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The productivity of a fermentation is proportional to the biomass concentration. The productivity can therefore be increased by retention of the cells in the fermentor. In this study microfiltration was used for cell retention in a fermentation of glucose to ethanol by baker's yeast. Compared to a system without cell retention the productivity could be increased 12-fold to 55 kg/m3 h at a biomass concentration of 135 kg/m3. Maximal ethanol concentrations of 76 kg/m3 were obtained at conditions of growth. At zero growth conditions in the integrated system the ethanol concentration could be increased to about 115 kg/m3, and could be produced for at least 10 hours. The fermentation results in the integrated system could be described reasonably well with a mathematical model based on a different linear inhibition kinetics for growth and substrate consumption.  相似文献   

2.
Summary Glucose and xylose can be converted continuously and simultaneously to butanol using immobilized cells. Xylose is only converted when glucose is completely consumed and the biocatalyst is not fully inhibited by butanol. With pervaporation for in-situ butanol recovery the complete conversion of a feed containing 60 kg/m3 of mixed sugars is achieved.  相似文献   

3.
Ethanol production in a continuous fermentation/membrane pervaporation system   总被引:12,自引:0,他引:12  
The productivity of ethanol fermentation processes, predominantly based on batch operation in the U.S. fuel ethanol industry, could be improved by adoption of continuous processing technology. In this study, a conventional yeast fermentation was coupled to a flat-plate membrane pervaporation unit to recover continuously an enriched ethanol stream from the fermentation broth. The process employed a concentrated dextrose feed stream controlled by the flow rate of permeate from the pervaporation unit via liquid-level control in the fermentor. The pervaporation module contained 0.1 m2 commercially available polydimethylsiloxane membrane and consistently produced a permeate of 20%–23% (w/w) ethanol while maintaining a level of 4%–6% ethanol in a stirred-tank fermentor. The system exhibited excellent operational stability. During continuous operation with cell densities of 15–23 g/l, ethanol productivities of 4.9–7.8 gl–1 h–1 were achieved utilizing feed streams of 269–619 g/l glucose. Pervaporation flux and ethanol selectivities were 0.31–0.79 lm–2 h–1 and 1.8–6.5 respectively.  相似文献   

4.
Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45?g/L, 3.70?g/L/h, 655.83?g/L, 378.5?g/m2/h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19?g/L, 0.61?g/L/h, 28.03?g/L, 58.56?g/m2/h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.  相似文献   

5.
The production of biobutanol is hindered by the product's toxicity to the bacteria, which limits the productivity of the process. In situ product recovery of butanol can improve the productivity by removing the source of inhibition. This paper reviews in situ product recovery techniques applied to the acetone butanol ethanol fermentation in a stirred tank reactor. Methods of in situ recovery include gas stripping, vacuum fermentation, pervaporation, liquid–liquid extraction, perstraction, and adsorption, all of which have been investigated for the acetone, butanol, and ethanol fermentation. All techniques have shown an improvement in substrate utilization, yield, productivity or both. Different fermentation modes favored different techniques. For batch processing gas stripping and pervaporation were most favorable, but in fed‐batch fermentations gas stripping and adsorption were most promising. During continuous processing perstraction appeared to offer the best improvement. The use of hybrid techniques can increase the final product concentration beyond that of single‐stage techniques. Therefore, the selection of an in situ product recovery technique would require comparable information on the energy demand and economics of the process. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:563–579, 2017  相似文献   

6.
Summary A two-stage fermentation process has been developed for continuous ethanol production by immobilized cells of Zymomonas mobilis. About 90–92 kg/m3 ethanol was produced after 4 h of residence time. Entrapped cells of Zymomonas mobilis have a capability to convert glucose to ethanol at 93% of the theoretical yield. The immobilized cell system has functioned for several weeks, and experience indicates that the carrageenan gel apparently facilitates easy diffusion of glucose and ethanol.The simplicity and the high productivity of the plug-flow reactor employing immobilized cells makes it economically attrative. An evaluation of process economics of an immobilized cell system indicates that at least 4 c/l of ethanol can be saved using the immobilized cell system rather than the conventional batch system. The high productivity achieved in the immobilized cell reactor results in the requirement for only small reactor vessels indicating low capital cost. Consequently, by switching from batch to immobilized processing, the fixed capital investment is substantially reduced, thus increasing the profitability of ethanol production by fermentation.  相似文献   

7.
Cell recycle and vacuum fermentation systems were developed for continuous ethanol production. Cell recycle was employed in both atmospheric pressure and vacuum fermentations to achieve high cell densities and rapid ethanol fermentation rates. Studies were conducted with Saccharomyces cerevisiae (ATCC No. 4126) at a fermentation temperature of 35°C. Employing a 10% glucose feed, a cell density of 50 g dry wt/liter was obtained in atmospheric-cell recycle fermentations which produced a fermentor ethanol productivity of 29.0 g/liter-hr. The vacuum fermentor eliminated ethanol inhibition by boiling away ethanol from the fermenting beer as it was formed. This permitted the rapid and complete fermentation of concentrated sugar solutions. At a total pressure of 50 mmHg and using a 33.4% glucose feed, ethanol productivities of 82 and 40 g/liter-hr were achieved with the vacuum system with and without cell recycle, respectively. Fermentor ethanol productivities were thus increased as much as twelvefold over conventional continuous fermentations. In order to maintain a viable yeast culture in the vacuum fermentor, a bleed of fermented broth had to be continuously withdrawn to remove nonvolatile compounds. It was also necessary to sparge the vacuum fermentor with pure oxygen to satisfy the trace oxygen requirement of the fermenting yeast.  相似文献   

8.
Conclusions Except for the pronounced adaptation-hysteresis effect, the pulse experiments exhibited the expected trend: deviation from the steady feed reference curve was greatest at lowest dilution rates. Under conditions of lowest glucose level the effect of pulsing would be expected to cause the largest fluctuations in glucose, causing a certain fraction of the cells to ferment. Generally over the entire dilution rate range the biomass production was decreased and the ethanol was increased by pulsing the feed stream. There is, however, some evidence that pulse feeding can trigger quite unexpected results. Point (6) at D=0.3 h–1 in Fig. 1 exhibit a biomass productivity which was about 20% greater than the continuous feeding reference value (DX=3.6 kg m–3 h–1 as compared with 3.0 kg m–3 h–1). Such performance would be of significant commercial value, but the poor reproducibility due to adaptation, as seen here, certainly would preclude its application.The results obtained should also be applicable to fed batch operation at the corresponding glucose level. Further experiments including the variation of the glucose feeding period would be necessary to obtain a conclusive picture. The observed phenomena are likely to occur in other fermentations and could eventually explain some of the problems existing with scale up of fermentation processes.Symbols D dilution rate h–1 - P product (ethanol) concentration kg m–3 - QO2 specific oxygen uptake rate mol kg–1 s–1 - QCO2 specific CO2 production rate mol kg–1 s–1 - S substrate (glucose) concentration kg m–3 - X biomass concentration kg m–3 - YP/S yield of ethanol from glucose kg kg–1 - YX/S yield of biomass from glucose kg kg–1  相似文献   

9.
An integrated solvent (ABE) fermentation and product removal process was investigated. A stable solvent productivity of 3.5 g/L h was achieved by using cells of Clostridium acetobutylicum immobilized onto a packed bed of bonechar, coupled with continuous product removal by pervaporation. Using a concentrated feed solution containing lactose at 130g/L, a lactose value of 97.9% was observed. The integrated fermentation and product removal system, with recycling of the treated fermentor effluent containing only low amount of solvents (/but lactose and acids), leads to only low acid losses. Therefore, most of the acids are converted to solvents, and this results in a high solvent yield of 0.39 g solvents/g lactose utilized. The pervaporation system provided a high product removal rate even at low solvent concentrations. A solvent membrane flux of 7.1 g/m(2) h with a selectivity of 5 was achieved during these investigations. The system proved to be very reliable.  相似文献   

10.
Summary Extractive fermentation is shown to greatly improve the performance ofZymomonas mobilis in continuous culture during the conversion of concentrated substrates to ethanol, and it is also used to eliminate the oscillatory behavior often exhibited byZ. mobilis in conventional fermentations. An ethanol productivity of 15.6 g/Lh is achieved with the near-conversion of a 295 g/L glucose feed at a medium dilution rate of 0.11 h–1 and solvent dilution rate of 1.5 h–1. This is more than triple the productivity obtained during conventional fermentation of a 135 g/L glucose feed at the same medium dilution rate.  相似文献   

11.
Butanol has recently gained increasing interest due to escalating prices in petroleum fuels and concerns on the energy crisis. However, the butanol production cost with conventional acetone–butanol–ethanol fermentation by Clostridium spp. was higher than that of petrochemical processes due to the low butanol titer, yield, and productivity in bioprocesses. In particular, a low butanol titer usually leads to an extremely high recovery cost. Conventional biobutanol recovery by distillation is an energy-intensive process, which has largely restricted the economic production of biobutanol. This article thus reviews the latest studies on butanol recovery techniques including gas stripping, liquid–liquid extraction, adsorption, and membrane-based techniques, which can be used for in situ recovery of inhibitory products to enhance butanol production. The productivity of the fermentation system is improved efficiently using the in situ recovery technology; however, the recovered butanol titer remains low due to the limitations from each one of these recovery technologies, especially when the feed butanol concentration is lower than 1 % (w/v). Therefore, several innovative multi-stage hybrid processes have been proposed and are discussed in this review. These hybrid processes including two-stage gas stripping and multi-stage pervaporation have high butanol selectivity, considerably higher energy and production efficiency, and should outperform the conventional processes using single separation step or method. The development of these new integrated processes will give a momentum for the sustainable production of industrial biobutanol.  相似文献   

12.
In-situ recovery of butanol during fermentation   总被引:1,自引:0,他引:1  
End-product inhibition in the acetone-butanol fermentation was reduced by using extractive fermentation to continuously remove acetone and butanol from the fermentation broth. In situ removal of inhibitory products from Clostridium acetobutylicum resulted in increased reactor productivity; volumetric butanol productivity increased from 0.58 kg/(m3h) in batch fermentation to 1.5 kg/(m3h) in fed-batch extractive fermentation using oleyl alcohol as the extraction solvent. The use of fed-batch operation allowed glucose solutions of up to 500 kg/m3 to be fermented, resulting in a 3.5- to 5-fold decrease in waste water volume. Butanol reached a concentration of 30–35 kg/m3 in the oleyl alcohol extractant at the end of fermentation, a concentration that is 2–3 times higher than is possible in regular batch or fed-batch fermentation. Butanol productivities and glucose conversions in fed-batch extractive fermentation compare favorable with continuous fermentation and in situ product removal fermentations.List of Symbols C g kg/m3 concentration of glucose in the feed - C w dm3/m3 concentration of water in the feed - F(t) cm3/h flowrate of feed to the fermentor at time t - V(t) dm3 broth volume at time t - V i dm3 initial broth volume - V si dm3 volume of the i-th aqueous phase sample - effective fraction of water in the feed Part 1. Bioprocess Engineering 2 (1987) 1–12  相似文献   

13.
Thermal damage, high osmolarity, and ethanol toxicity in the yeast Saccharomyces cerevisiae limit titer and productivity in fermentation to produce ethanol. We show that long-term adaptive laboratory evolution at 39.5°C generates thermotolerant yeast strains, which increased ethanol yield and productivity by 10% and 70%, in 2% glucose fermentations. From these strains, which also tolerate elevated-osmolarity, we selected a stable one, namely a strain lacking chromosomal duplications. This strain (TTY23) showed reduced mitochondrial metabolism and high proton efflux, and therefore lower ethanol tolerance. This maladaptation was bolstered by reestablishing proton homeostasis through increasing fermentation pH from 5 to 6 and/or adding potassium to the media. This change allowed the TTY23 strain to produce 1.3–1.6 times more ethanol than the parental strain in fermentations at 40°C with glucose concentrations ~300 g/L. Furthermore, ethanol titers and productivities up to 93.1 and 3.87 g·L −1·hr −1 were obtained from fermentations with 200 g/L glucose in potassium-containing media at 40°C. Albeit the complexity of cellular responses to heat, ethanol, and high osmolarity, in this study we overcome such limitations by an inverse metabolic engineering approach.  相似文献   

14.
Saccharomyces cerevisiae is a widely used host organism for the production of heterologous proteins, often cultivated in glucose-based fed-batch processes. This production system however has many factors limiting the productivity, mainly towards the end of the fermentation. For the optimised production of a Camelid antibody fragment this process was evaluated. In shake flask cultivations, it was found that ethanol has a strong effect on productivity increase and therefore glucose and ethanol fed-batch fermentations were compared. It appeared that specific heterologous protein production was up to five times higher in the ethanol cultivation and could be further optimised. Then the key characteristics of ethanol fed-batch fermentations such as growth rate and specific production were determined under ethanol limitation and accumulation and growth limiting conditions in the final phase of the process. It appeared that an optimal production process should have an ethanol accumulation throughout the feed phase of approximately 1% v/v in the broth and that production remains very efficient even in the last phase of the process. This productivity increase on ethanol versus glucose was also proven for several other Camelid antibody fragments some of which were heavily impaired in secretion on glucose, but very well produced on ethanol. This leads to the suggestion that the ethanol effect on improved heterologous protein production is linked to a stress response and folding and secretion efficiency.  相似文献   

15.
Simultaneous acetone butanol ethanol (ABE) fermentation by Clostridium beijerinckii P260 and in situ product recovery was investigated using a vacuum process operated in two modes: continuous and intermittent. Integrated batch fermentations and ABE recovery were conducted at 37 °C using a 14-L bioreactor (7.0 L fermentation volume) containing initial substrate (glucose) concentration of 60 g/L. The bioreactor was connected in series with a condensation system and vacuum pump. Vacuum was applied continuously or intermittently with 1.5 h vacuum sessions separated by 4, 6, and 8 h intervals. A control ABE fermentation experiment was characterized by incomplete glucose utilization due to butanol toxicity to C. beijerinckii P260, while fermentation coupled with in situ recovery by both continuous and intermittent vacuum modes resulted in complete utilization of glucose, greater productivity, improved cell growth, and concentrated recovered ABE stream. These results demonstrate that vacuum technology can be applied to integrated ABE fermentation and recovery even though the boiling point of butanol is greater than that of water.  相似文献   

16.
Four systems comprising of an ethanol fermentation integrated with microfiltration and/or pervaporation, and a conventional continuous culture, were compared with respect to the performance of the fermentation and economics. The processes are compared on the basis of the same kinetic model. It is found that cell retention by microfiltration leads to lower production costs, compared to a conventional continuous culture. Pervaporation becomes profitable at a high selectivity of ethanol/water separation and low membrane prices.  相似文献   

17.
In this work, we performed recovery of ethanol from a fermentation broth of banana pseudostem by pervaporation (PV) as a lower-energy-cost alternative to traditional separation processes such as distillation. As real fermentation systems generally contain by-products, it was investigated the effects of different components from the fermentation broth of banana pseudostem on PV performance for ethanol recovery through commercial flat sheet polydimethylsiloxane (PDMS) membrane. The experiments were compared to a binary solution (ethanol/water) to determine differences in the results due to the presence of fermentation by-products. A real fermented broth of banana pseudostem was also used as feed for the PV experiments. Seven by-products from fermented broth were identified: propanol, isobutanol, methanol, isoamyl alcohol, 1-pentanol, acetic acid, and succinic acid. Moreover, the residual sugar content of 3.02 g/L1 was obtained. The presence of methanol showed the best results for total permeate flux (0.1626 kg·m−2·h−1) and ethanol permeate flux (0.0391 kg·m−2·h−1) during PV at 25°C and 3 wt% ethanol, also demonstrated by the selectivity and enrichment factor. The lowest total fluxes of permeate were observed in the experiments containing the acids. Better permeance of 0.1171 from 0.0796 kg·m−2·h−1 and membrane selectivity of 9.77 from 9.30 were obtained with real fermentation broth than with synthetic solutions, possibly due to the presence of by-products in the multicomponent mixtures, which contributed to ethanol permeation. The results of this work indicate that by-products influence pervaporation of ethanol with hydrophobic flat sheet membrane produced from the fermented broth of banana pseudostem.  相似文献   

18.
Microporous-membrane-based extractive product recovery in product-inhibited fermentations allows in situ recovery of inhibitory products in a nondispersive fashion. A tubular bioreactor with continuous strands of hydrophobic microporous hollow fibers having extracting solvent flowing in fiber lumen was utilized for yeast fermentation of glucose to ethanol. Yeast was effectively immobilized on the shell side in small lengths of chopped microporous hyrophilic hollow fibers. The beneficial effects of in situ dispersion-free solvent ex (oleyl alcohol and dibutyl phthalate) were demonstrated for a 300 g/L glucose substrate feed. Outlet glucose concentration dropped drastically from 123 to 41 g/L as solvent/ substrate flow ratio was increased from 0 to 3 at 9 mL/h of substrate flow rate with oleyl alcohol as extracting solvent. The significant productivity increase with in situ solvent extraction became more evident as solvent/ substrate flow ratio increased. A model of the locally integrated extractive bioreactor describes the observed fermentor performance quite well.  相似文献   

19.
Summary Continuous ethanol fermentations were conducted in single-stage and three-stage Horizontal Parallel Flow (HOPAF) bioreactor systems. Biological entrapment of yeast could be achieved by virtue of its growth and flocculence in reusable porous stainless steel fiber sheets. Twenty-five g·l–1·h–1 productivity was obtained in three-stage system. Distributions of ethanol and glucose in reactors were examined.  相似文献   

20.
Whereas Saccharomyces cerevisiae uses the Embden‐Meyerhof‐Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner‐Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ~100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost‐effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号