首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protection against infection hinges on a close interplay between the innate immune system and the adaptive immune system. Depending on the type and context of a pathogen, the innate system instructs the adaptive immune system to induce an appropriate immune response. Here, we hypothesize that the adaptive immune system stores these instructions by changing from a naive to an appropriate memory phenotype. In a secondary immune reaction, memory lymphocytes adhere to their instructed phenotype. Because cross-reactions with unrelated Ags can be detrimental, such a qualitative form of memory requires a sufficient degree of specificity of the adaptive immune system. For example, lymphocytes instructed to clear a particular pathogen may cause autoimmunity when cross-reacting with ignored self molecules. Alternatively, memory cells may induce an immune response of the wrong mode when cross-reacting with subsequent pathogens. To maximize the likelihood of responding to a wide variety of pathogens, it is also required that the immune system be sufficiently cross-reactive. By means of a probabilistic model, we show that these conflicting requirements are met optimally by a highly specific memory lymphocyte repertoire. This explains why the lymphocyte system that was built on a preserved functional innate immune system has such a high degree of specificity. Our analysis suggests that 1) memory lymphocytes should be more specific than naive lymphocytes and 2) species with small lymphocyte repertoires should be more vulnerable to both infection and autoimmune diseases.  相似文献   

2.

Background

The ability of an immune system to remember pathogens improves the chance of the host to survive a second exposure to the same pathogen. This immunological memory has evolved in response to the pathogen environment of the hosts. In vertebrates, the memory of previous infection is physiologically accomplished by the development of memory T and B cells. Many questions concerning the generation and maintenance of immunological memory are still debated. Is there a limit to how many memory cells a host can generate and maintain? If there is a limit, how should new cells be incorporated into a filled memory compartment? And how many different pathogens should the immune system remember?

Results

In this study, we examine how memory traits evolve as a response to different pathogen environments using an individual-based model. We find that even without a cost related to the maintenance of a memory pool, the positive effect of bigger memory pool sizes saturates. The optimal diversity of a limited memory pool is determined by the probability of re-infection, rather than by the prevalence of a pathogen in the environment, or the frequency of exposure.

Conclusions

Relating immune memory traits to the pathogen environment of the hosts, our population biological framework sheds light on the evolutionary determinants of immune memory.
  相似文献   

3.
Interspecific pathogen interactions can profoundly affect pathogen population dynamics and the efficacy of control strategies. However, many pathogens exhibit cyclic abundance patterns (e.g., seasonality), and temporal asynchrony between interacting pathogens could reduce the impact of those interactions. Here we use an extension of our previously published model to investigate the effects of cycles on pathogen interaction. We demonstrate that host immune memory can maintain the impact of an interaction, even when the effector pathogen abundance is low or the pathogen is absent. Paradoxically, immune memory can result in pathogens interacting more strongly when temporally out of phase. We find that interactions between species can result in changes to the temporal pattern of the affected species. We further demonstrate that this may be observed in a natural host-pathogen system. Given the continuing debate regarding the relevance of pathogen interactions in natural systems and increasing concern about treatment strategies for coinfections, both the discovery of a shift in cycle in empirical data and the mechanism by which we identified it are important. Finally, because the model structure used here is analogous to models of a simple predator-prey system, we also consider the consequences of these findings in the context of that system.  相似文献   

4.
Insects counter infection with innate immune responses that rely on cells called hemocytes. Hemocytes exist in association with the insect''s open circulatory system and this mode of existence has likely influenced the organization and control of anti-pathogen immune responses. Previous studies reported that pathogens in the mosquito body cavity (hemocoel) accumulate on the surface of the heart. Using novel cell staining, microdissection and intravital imaging techniques, we investigated the mechanism of pathogen accumulation in the pericardium of the malaria mosquito, Anopheles gambiae, and discovered a novel insect immune tissue, herein named periostial hemocytes, that sequesters pathogens as they flow with the hemolymph. Specifically, we show that there are two types of endocytic cells that flank the heart: periostial hemocytes and pericardial cells. Resident periostial hemocytes engage in the rapid phagocytosis of pathogens, and during the course of a bacterial or Plasmodium infection, circulating hemocytes migrate to the periostial regions where they bind the cardiac musculature and each other, and continue the phagocytosis of invaders. Periostial hemocyte aggregation occurs in a time- and infection dose-dependent manner, and once this immune process is triggered, the number of periostial hemocytes remains elevated for the lifetime of the mosquito. Finally, the soluble immune elicitors peptidoglycan and β-1,3-glucan also induce periostial hemocyte aggregation, indicating that this is a generalized and basal immune response that is induced by diverse immune stimuli. These data describe a novel insect cellular immune response that fundamentally relies on the physiological interaction between the insect circulatory and immune systems.  相似文献   

5.
We present a new approach to the study of the immune system that combines techniques of systems biology with information provided by data-driven prediction methods. To this end, we have extended an agent-based simulator of the immune response, C-ImmSim, such that it represents pathogens, as well as lymphocytes receptors, by means of their amino acid sequences and makes use of bioinformatics methods for T and B cell epitope prediction. This is a key step for the simulation of the immune response, because it determines immunogenicity. The binding of the epitope, which is the immunogenic part of an invading pathogen, together with activation and cooperation from T helper cells, is required to trigger an immune response in the affected host. To determine a pathogen''s epitopes, we use existing prediction methods. In addition, we propose a novel method, which uses Miyazawa and Jernigan protein–protein potential measurements, for assessing molecular binding in the context of immune complexes. We benchmark the resulting model by simulating a classical immunization experiment that reproduces the development of immune memory. We also investigate the role of major histocompatibility complex (MHC) haplotype heterozygosity and homozygosity with respect to the influenza virus and show that there is an advantage to heterozygosity. Finally, we investigate the emergence of one or more dominating clones of lymphocytes in the situation of chronic exposure to the same immunogenic molecule and show that high affinity clones proliferate more than any other. These results show that the simulator produces dynamics that are stable and consistent with basic immunological knowledge. We believe that the combination of genomic information and simulation of the dynamics of the immune system, in one single tool, can offer new perspectives for a better understanding of the immune system.  相似文献   

6.
7.
Maternal transfer of strain-specific immunity in an invertebrate   总被引:10,自引:0,他引:10  
The most celebrated component of the vertebrate immune system is the acquired response in which memory cells established during primary infection enhance the proliferation of antibodies during secondary infection. Additionally, the strength of vertebrate acquired immune responses varies dramatically depending on the infecting pathogen species or on the pathogen genotype within species. Because invertebrates lack the T-cell receptors and Major Histocompatibility Complex (MHC) molecules that mediate vertebrate adaptive immune responses, they are thought to lack adaptive immunity and be relatively unspecific in their interactions with pathogens. With only innate immunity, invertebrate hosts are believed to be nai;ve at each new encounter with pathogens. Nevertheless, some forms of facultative immunity appear to be important in insects; some individuals have enhanced immunity due to population density, and some social insects benefit when their nest-mates have been exposed to a pathogen or pathogen mimic (; see for a predation example.) Here we provide evidence for acquired strain-specific immunity in the crustacean Daphnia magna infected with the pathogenic bacteria Pasteuria ramosa. Specifically, the fitness of hosts was enhanced when challenged with a bacterial strain their mother had experienced relative to cases when mother and offspring were challenged with different strains.  相似文献   

8.
9.
The decision of the immune system to trigger immune responses that are, respectively, induced by Th1 or Th2 effectors is a critical one, because it profoundly influences disease outcome. We have recently constructed a mathematical model of Th1-Th2-pathogen interactions that shows that the major decisional events can often be successfully determined by the intrinsic behaviour of the T helper system itself. For certain dangerous types of pathogens, however, which replicate rapidly or have developed strategies to evade the immune response, additional stimuli may be necessary. As a possible mechanism for the decision-making process innate immune recognition has been proposed. Here we present an enlarged version of our model, which incorporates signals created from the innate immune system after pathogen recognition. The model analysis suggests that there is fault-tolerance of the T helper system to incorrect Th1 signals. In the presence of incorrect Th1 stimuli an initial Th1 response is shifted to the correct Th2-dominated response owing to the intrinsic T helper dynamics. By contrast, according to our model there is no fault-tolerance for incorrect Th2 signals. In fact, if timing is unimportant then Th2 signals are superfluous since the intrinsic T helper dynamics provide an automatic switch to Th2 if Th1 effectors fail to control the pathogen. Th2 signals may, however, be required to accelerate the onset of the Th2 response. Additionally, we discuss the role of feedback where successful pathogen destruction leads to up-regulation of activation of the effective T helper type. As one possibility we examine the role of CpG motifs as indicators for successful pathogen destruction. Differences between instructive and feedback mechanisms are highlighted.  相似文献   

10.
Emerging viral diseases are often the product of a host shift, where a pathogen jumps from its original host into a novel species. Phylogenetic studies show that host shifts are a frequent event in the evolution of most pathogens, but why pathogens successfully jump between some host species but not others is only just becoming clear. The susceptibility of potential new hosts can vary enormously, with close relatives of the natural host typically being the most susceptible. Often, pathogens must adapt to successfully infect a novel host, for example by evolving to use different cell surface receptors, to escape the immune response, or to ensure they are transmitted by the new host. In viruses there are often limited molecular solutions to achieve this, and the same sequence changes are often seen each time a virus infects a particular host. These changes may come at a cost to other aspects of the pathogen''s fitness, and this may sometimes prevent host shifts from occurring. Here we examine how these evolutionary factors affect patterns of host shifts and disease emergence.  相似文献   

11.
No evidence for immune priming in ants exposed to a fungal pathogen   总被引:1,自引:0,他引:1  
Reber A  Chapuisat M 《PloS one》2012,7(4):e35372
There is accumulating evidence that invertebrates can acquire long-term protection against pathogens through immune priming. However, the range of pathogens eliciting immune priming and the specificity of the response remain unclear. Here, we tested if the exposure to a natural fungal pathogen elicited immune priming in ants. We found no evidence for immune priming in Formica selysi workers exposed to Beauveria bassiana. The initial exposure of ants to the fungus did not alter their resistance in a subsequent challenge with the same fungus. There was no sign of priming when using homologous and heterologous combinations of fungal strains for exposure and subsequent challenges at two time intervals. Hence, within the range of conditions tested, the immune response of this social insect to the fungal pathogen appears to lack memory and strain-specificity. These results show that immune priming is not ubiquitous across pathogens, hosts and conditions, possibly because of immune evasion by the pathogen or efficient social defences by the host.  相似文献   

12.
The innate immune response was once considered to be a limited set of responses that aimed to contain an infection by primitive 'ingest and kill' mechanisms, giving the host time to mount a specific humoral and cellular immune response. In the mid-1990s, however, the discovery of Toll-like receptors heralded a revolution in our understanding of how microorganisms are recognized by the innate immune system, and how this system is activated. Several major classes of pathogen-recognition receptors have now been described, each with specific abilities to recognize conserved bacterial structures. The challenge ahead is to understand the level of complexity that underlies the response that is triggered by pathogen recognition. In this Review, we use the fungal pathogen Candida albicans as a model for the complex interaction that exists between the host pattern-recognition systems and invading microbial pathogens.  相似文献   

13.
A key feature of the vertebrate adaptive immune system is acquired immune memory, whereby hosts launch a faster and heightened response when challenged by previously encountered pathogens, preventing full infection. Here, we use a mathematical model to explore the role of ecological and epidemiological processes in shaping selection for costly acquired immune memory. Applying the framework of adaptive dynamics to the classic SIR (Susceptible‐Infected‐Recovered) epidemiological model, we focus on the conditions that may lead hosts to evolve high levels of immunity. Linking our work to previous theory, we show how investment in immune memory may be greatest at long or intermediate host lifespans depending on whether immunity is long lasting. High initial costs to gain immunity are also found to be essential for a highly effective immune memory. We also find that high disease infectivity and sterility, but intermediate virulence and immune period, increase selection for immunity. Diversity in host populations through evolutionary branching is found to be possible but only for a limited range of parameter space. Our model suggests that specific ecological and epidemiological conditions have to be met for acquired immune memory to evolve.  相似文献   

14.
The interaction between the immune system and pathogens is often characterised as a predator–prey interaction. This characterisation ignores the fact that both require host resources to reproduce. Here, we propose novel theory that considers how these resource requirements can modify the interaction between the immune system and pathogens. We derive a series of models to describe the energetic interaction between the immune system and pathogens, from fully independent resources to direct competition for the same resource. We show that increasing within‐host resource supply has qualitatively distinct effects under these different scenarios. In particular, we show the conditions for which pathogen load is expected to increase, decrease or even peak at intermediate resource supply. We survey the empirical literature and find evidence for all three patterns. These patterns are not explained by previous theory, suggesting that competition for host resources can have a strong influence on the outcome of disease.  相似文献   

15.
Summary A continuous harvest effort can lead a population to extinction. How an “unconscious” immune system would perpetrate such an effort in order to eliminate a self-replicating antigen (a pathogen) becomes an intriguing problem if the system responses are functions of the pathogen population: the responses cannot be a continuous effort as the pathogen vanishes. On theoretical grounds, we show some qualities an immune response must have to support pathogen elimination. Then, three specific mechanisms are addressed: a pathogen-independent positive feedback loop among the responding cells of the system (e.g., B-lymphocyte and T-helper); the persistence of antigen bound to presenting cells; and the programmed expansion/contraction of a pool of responding cells. The maintenance of responding cells due to these mechanisms is the essential feature to the effective clearance of self-replicating agents. Thus, evolutionarily, the primary function of a helper lymphocyte would be to amplify a response and the primary function of memory would be the very elimination of pathogens.  相似文献   

16.
17.
Finlay BB  McFadden G 《Cell》2006,124(4):767-782
Multicellular organisms possess very sophisticated defense mechanisms that are designed to effectively counter the continual microbial insult of the environment within the vertebrate host. However, successful microbial pathogens have in turn evolved complex and efficient methods to overcome innate and adaptive immune mechanisms, which can result in disease or chronic infections. Although the various virulence strategies used by viral and bacterial pathogens are numerous, there are several general mechanisms that are used to subvert and exploit immune systems that are shared between these diverse microbial pathogens. The success of each pathogen is directly dependant on its ability to mount an effective anti-immune response within the infected host, which can ultimately result in acute disease, chronic infection, or pathogen clearance. In this review, we highlight and compare some of the many molecular mechanisms that bacterial and viral pathogens use to evade host immune defenses.  相似文献   

18.
Wodarz D 《Current biology : CB》2003,13(18):1648-1652
Memory is a central characteristic of immune responses. It is defined as an elevated number of specific immune cells that remain after resolution of infection and can protect the host against reinfection. The evolution of immunological memory is subject to debate. The advantages of memory discussed so far include protection from reinfection, control of chronic infection, and the transfer of immune function to the next generation. Mathematical models are used to identify a new force that can drive the evolution of immunological memory: the duration of memory can regulate the degree of competition between different pathogens. While a long duration of memory provides lasting protection against reinfection, it may also allow an inferior pathogen species to persist. This can be detrimental for the host if the inferior pathogen is more virulent. On the other hand, a shorter duration of memory ensures that an inferior pathogen species is excluded. This can be beneficial for the host if the inferior pathogen is more virulent. Thus, while in the absence of pathogen diversity memory is always expected to evolve to a long duration, under specific circumstances, memory can evolve toward shorter durations in the presence of pathogen diversity.  相似文献   

19.
Pulendran B  Ahmed R 《Cell》2006,124(4):849-863
Vaccination is the most effective means of preventing infectious diseases. Despite the success of many vaccines, there is presently little knowledge of the immunological mechanisms that mediate their efficacy. Such information will be critical in the design of future vaccines against old and new infectious diseases. Recent advances in immunology are beginning to provide an intellectual framework with which to address fundamental questions about how the innate immune system shapes adaptive immunity. In this review, we summarize current knowledge about how the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. In addition, we point out unanswered questions and identify critical challenges, the solution of which, we believe, will greatly facilitate the rational design of novel vaccines against a multitude of emerging infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号