共查询到20条相似文献,搜索用时 15 毫秒
1.
J H Lakey D Massotte F Heitz J L Dasseux J F Faucon M W Parker F Pattus 《European journal of biochemistry》1991,196(3):599-607
In order to gain some insight into the mechanism of insertion into membranes of the pore-forming domain of colicin A and the structure of its membrane-bound form, circular dichroism (in the near and far ultraviolet), fluorescence and ultraviolet spectroscopy experiments were carried out. Because the structure of the water-soluble form of this fragment has been determined by X-ray crystallography, these spectroscopic methods provided valuable information on the secondary structure and the environment of aromatic residues within the two forms of the peptide. These results strongly suggest that the pore-forming domain of colicin A does not undergo drastic unfolding upon insertion into membrane. The conformational change associated with this process is triggered by the negatively charged lipids and probably consists of a reorientation of helix pairs with respect to each other. Exposure of the aromatic residues to the aqueous phase decreases on binding to lipids whilst the exposure of the tryptophans to the membrane phase increases. This cannot occur without a reorientation of helices 3-10. All data from this study support the model presented previously in which the known crystal structure opens like an 'umbrella' inserting the hydrophobic hairpin (helix 8-9) perpendicular to the membrane plane and the helical pair 1-2 and the domain containing the three tryptophans (helices 3-7) lying more or less parallel to the membrane plane. Lipids are bound more tightly to the protein at acidic pH than at neutral pH although a similar lipid protein complex is formed with 1,2-dimyristoyl-sn-glycero(3)-phospho(1)- -sn-glycerol at both pH values. 相似文献
2.
M W Parker J P Postma F Pattus A D Tucker D Tsernoglou 《Journal of molecular biology》1992,224(3):639-657
The E1 subgroup (E1, A, B, IA, IB, K and N) of anti-bacterial toxins called colicins is known to form voltage-dependent channels in lipid bilayers. The crystal structure of the pore-forming domain of colicin A from Escherichia coli has been refined to the diffraction limit of the crystals at 2.4 A resolution by means of molecular dynamics and restrained least-squares methods to a conventional R-factor of 0.18 for all data between 6.0 and 2.4 A resolution. The polypeptide chain of 204 amino acid residues consists of ten alpha-helices organized in a three-layer structure. The helices range in length from 9 to 23 residues with an average length of 125 residues. The packing arrangement of the helices has been analysed; the packing is different from that observed in four-helix bundle proteins. The sites of 83 water molecules have been located and refined. Analysis of the structure provides insights into the mechanism of formation of a voltage-gated channel by the protein. Although it is proposed that substantial tertiary structural changes occur during membrane insertion, the secondary structural elements remain conserved. This idea has been proposed recently for a number of other protein-membrane events and thus may have more general applicability. 相似文献
3.
Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films 总被引:16,自引:0,他引:16
Attenuated total reflection Fourier-transform infrared spectroscopy of thin hydrated films of soluble and membrane protein included in a phospholipid bilayer is shown to provide useful information as to the secondary structure of the protein. The analysis of the amide I band of deuterated samples by Fourier self-deconvolution followed by a curve fitting was performed by a new procedure in which all the input parameters are generated by the computer rather than by the investigator. The results of this analysis provide a correct estimation of the alpha-helix and beta-sheet structure content with a standard deviation of 8.6% when X-ray structures are taken as a reference. We also show that the orientation of the different secondary structures resolved by the Fourier self-deconvolution/curve-fitting procedure and of the phospholipid acyl chains can be simultaneously evaluated for membrane proteins reconstituted in a lipid bilayer. Of special interest for reconstitution of membrane proteins, the lipid/protein ratio can be accurately and quickly determined from the infrared spectrum. 相似文献
4.
Fourier-transform infrared spectroscopy (FTIR) was used to study the hydrogen-bonding interactions that take place in vitrified carbohydrates of different chain lengths. The band position of the OH stretching band (vOH) and the shift in band position as a function of temperature were determined from the FTIR spectra as indicators for the length and strength of intermolecular hydrogen bonds, respectively. Differential scanning calorimetry (DSC) was used to corroborate the FTIR studies and to measure the change in heat capacity (delta C(p)) that is associated with the glass transition. We found that with increasing T(g), the band position of vOH increases, the wavenumber-temperature coefficient of vOH in the glassy state, WTC(g), increases, whereas (delta C(p) decreases. The positive correlation that was found between vOH and the glass transition temperature, T(g), indicates that the length of the hydrogen bonds increases with increasing T(g). The increase in WTC(g) with increasing T(g) indicates that the average strength of hydrogen bonding decreases with increasing T(g). This implies that oligo- and polysaccharides (high T(g)) have a greater degree of freedom to rearrange hydrogen bonds during temperature changes than monosaccharides (low T(g)). Interestingly, WTC(g) and delta C(p) showed a negative linear correlation, indicating that the change in heat capacity during the glass transition is associated with the strength of the hydrogen-bonding network in the glassy state. Furthermore, we report that introduction of poly-L-lysine in glassy sugar matrices decreases the average length of hydrogen bonds, irrespective of the size of the carbohydrate. Palmitoyl-oleoyl-phosphatidylcholine (POPC) vesicles were found to only interact with small sugars and not with dextran. 相似文献
5.
Secondary structure of the pore-forming colicin A and its C-terminal fragment. Experimental fact and structure prediction 总被引:7,自引:0,他引:7
F Pattus F Heitz C Martinez S W Provencher C Lazdunski 《European journal of biochemistry》1985,152(3):681-689
Conformational investigations, using circular dichroism, on the pore-forming protein, colicin A (Mr 60 000), and a C-terminal bromelain fragment (Mr 20 000) were undertaken to estimate their secondary structure and to search for pH-dependent conformational changes. Colicin A and the bromelain peptide are mainly alpha-helical with an enrichment of the alpha-helical content in the C-terminal domain carrying the ionophoric activity. The non-negligible beta-sheet structure in the C-terminal domain is unstable and is easily transformed into alpha-helix upon decreasing the polarity of the solvent. No evidence of pH-dependent conformational modification, correlated with modification of colicin A activity, could be obtained. The secondary structure estimated on the basis of experimental data favoured a model in which the pore is built of a minimal number of six transmembrane alpha-helical segments. Search for such segments in the amino acid sequence of the C-terminal domain of colicin A was carried out by combining secondary structure prediction methods with hydrophobicity and hydrophobic movement calculations. Similar calculations on the C-terminal domains of colicin E1 and IB indicate a common structure of the pores formed by colicin A, E1 and IB. Only two or three putative transmembrane segments could be selected in the sequences of colicin A, IB or E1. As a result, it is concluded that the channel is probably not built by a single colicin molecule but more likely by an oligomer. 相似文献
6.
The interaction of the 20-kDa pore-forming domain of colicin A with phospholipid vesicles was investigated by gel permeation chromatography, analytical centrifugation, and electron microscopy. Under the experimental conditions of this study, this peptide was found to interact only with vesicles containing negatively charged phospholipids. It forms a well-defined disklike complex with phosphatidylglycerols with a preference for those containing 12-14 atoms of carbon in their fatty acid chain. This complex has a diameter of 120 A and is about one bilayer thick. It contains nine molecules of peptide and is formed both at acidic pH (pH 5.0) and at neutral pH (pH 7.2). 相似文献
7.
Alain Ibañez de Opakua Tammo Diercks Ana R. Viguera Francisco J. Blanco 《Biomolecular NMR assignments》2010,4(1):33-36
Colicin A protein kills cells by opening voltage-dependent ion channels in the cytoplasmic membrane. The C-terminal domain of colicin A retains the full protein’s ability to form membrane pores, making it an excellent model for in vitro studies of protein-membrane interaction. We report here the NMR assignment and backbone dynamics of this domain in solution. The chemical shifts identify ten α-helices that match those observed in the crystal structure, while the 15N{1H} NOEs show differential fast mobility for some of the inter-helical loops and the chain ends. This analysis provides the basis for further NMR studies of this channel forming protein and its interactions. 相似文献
8.
Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study.
下载免费PDF全文

The helical order parameter of the 26-residue amphiphilic bee venom peptide melittin was measured by polarized attenuated total reflection infrared spectroscopy (ATR-IR) in dry phospholipid multibilayers (MBLs) and when bound to single supported planar bilayers (SPBs) under D2O. Melittin adopted an alpha-helical conformation in MBLs of dipalmitoyl-phosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), a 4:1 mixture of POPC and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), and when bound to SPBs of POPC:POPG (4:1). The order parameter of the alpha-helix in the bilayers depended mainly on the type of membrane preparation, and only little on the phospholipid composition of the bilayers. On hydrated SPBs, the helical order parameter was negative, indicating that the alpha-helix long axis of melittin was preferentially oriented parallel to the plane of the supported membrane. However, in dry MBLs, the helical order parameter was positive, indicating that the alpha-helix of melittin was preferentially oriented parallel to the phospholipid fatty acyl chains. It is concluded that the orientation of melittin in membranes depends on the degree of hydration of the model membranes rather than on the technique which is used for its determination. ATR-IR spectroscopy of polypeptides in or associated with supported planar membranes in D2O may become a useful tool for the determination of their orientation in and on membranes. 相似文献
9.
S J Perkins K F Smith A S Nealis P I Haris D Chapman C J Bauer R A Harrison 《Journal of molecular biology》1992,228(4):1235-1254
Proteinase inhibitor members of the SERPIN superfamily are characterized by the presence of a proteolytically sensitive reactive-site loop. Cleavage within this region results in a conformational transition from an unstable "stressed" native protein to a more stable "relaxed" cleaved molecule. In order to identify the principal molecular aspects of this transition, 1H nuclear magnetic resonance (n.m.r.) and FT-IR spectroscopy were applied to the study of four SERPINs. 1H n.m.r. spectra of approximately 20 high-field ring-current-shifted methyl signals exhibited slightly different chemical shifts in the native and cleaved forms of alpha 1-antitrypsin (alpha 1-AT), alpha 1-antichymotrypsin (alpha 1-ACT) and C1 inhibitor (C1-INH), but not ovalbumin, between 20 degrees C and 90 degrees C. Ring current calculations based on crystal co-ordinates for cleaved alpha 1-AT and alpha 1-ACT and native ovalbumin showed that these signals originate from highly localized interactions between different buried residues corresponding to alpha-helix and beta-sheet segments of the SERPIN fold. The small shift changes correspond to small relative conformational side-chain rearrangements of about 0.01 nm to 0.05 nm in the protein hydrophobic core, i.e. the tertiary structure interactions in the two forms of the SERPIN fold are well-preserved, and changes in this appear unimportant for the stabilization found after reactive centre cleavage. Fourier transform infrared (FT-IR) spectroscopic studies of the amide I band showed that the native and cleaved forms of alpha 1-AT, alpha 1-ACT and C1-INH contain 28% to 36% alpha-helix and 38% to 44% beta-sheet. Second derivative FT-IR spectra using H2O and 2H2O buffers revealed very large differences in the amide I band between the native and cleaved forms of alpha 1-AT, alpha 1-ACT and C1-INH, but not for ovalbumin. The alpha-helix band was most sensitive to 1H-2H exchange, while the beta-sheet bands were not, and greater amounts of antiparallel beta-sheet were detected in the cleaved form. 1H n.m.r. showed that polypeptide amide 1H-2H exchange was greater in the native forms of alpha 1-AT, alpha 1-ACT and C1-INH than in their cleaved forms, whereas for ovalbumin it was unchanged. The FT-IR and 1H-2H exchange data show that alterations in the secondary structure are central to the stabilization of the cleaved SERPIN structure.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
10.
Topography of the membrane-binding domain of cytochrome b5 in lipids by Fourier-transform infrared spectroscopy 总被引:1,自引:0,他引:1
Fourier-transform infrared spectroscopy was used to examine the secondary structure of the membrane-binding domain (nonpolar peptide) of rabbit liver cytochrome b5 in D2O and in the presence of phospholipids and deoxycholate. In all situations, the predominant structure was alpha helix, but an examination of the components of the amide I band in the spectrum of the nonpolar peptide showed that the major peak was shifted from 1655 cm-1 in the lipids to 1650 cm-1 in deoxycholate. This shift to lower frequency, together with a decrease in intensity of the amide II band, is indicative of N-H to N-D exchange of the peptide backbone. A semiquantitative analysis indicated that the alpha helix of the peptide is over 95% exchanged in the presence of deoxycholate but is only 10% exchanged in the presence of lipid. These data suggest that the membrane-inserted portion of the peptide is alpha helical and is largely protected from N-H to N-D exchange by the bilayer. We suggest that this technique appears to provide a general method for determining the type of secondary structure involved in membrane interaction and the percentage of this structure which is involved in the interaction. 相似文献
11.
Background
Protamines are small basic proteins that condense the DNA in mature spermatozoa. Typical protamines are of simple composition and very arginine-rich, usually in the range of 60-80%. Arginine residues are distributed in a number of stretches separated by neutral amino acids. We have used Fourier transform infrared spectroscopy (FTIR) to gain access for the first time to the secondary structure of protamines in sperm nuclei. This technique is particularly well suited to the study of DNA-bound protamine in whole nuclei since it is not affected by turbidity. 相似文献12.
Classification and identification of bacteria by Fourier-transform infrared spectroscopy. 总被引:14,自引:0,他引:14
This study describes a computer-based technique for classifying and identifying bacterial samples using Fourier-transform infrared spectroscopy (FT-IR) patterns. Classification schemes were tested for selected series of bacterial strains and species from a variety of different genera. Dissimilarities between bacterial IR spectra were calculated using modified correlation coefficients. Dissimilarity matrices were used for cluster analysis, which yielded dendrograms broadly equated with conventional taxonomic classification schemes. Analyses were performed with selected strains of the taxa Staphylococcus, Streptococcus, Clostridium, Legionella and Escherichia coli in particular, and with a database containing 139 bacterial reference spectra. The latter covered a wide range of Gram-negative and Gram-positive bacteria. Unknown specimens could be identified when included in an established cluster analysis. Thirty-six clinical isolates of Staphylococcus aureus and 24 of Streptococcus faecalis were tested and all were assigned to the correct species cluster. It is concluded that: (1) FT-IR patterns can be used to type bacteria; (2) FT-IR provides data which can be treated such that classifications are similar and/or complementary to conventional classification schemes; and (3) FT-IR can be used as an easy and safe method for the rapid identification of clinical isolates. 相似文献
13.
Adriamycin plays a prominent role in the treatment of leukemia and solid tumors in man. The mode of interaction of adriamycin with its nuclear target, responsible for its therapeutic effect, is known [Berman, H. M., & Young, P.R. (1981) Annu. Rev. Biophys. Bioeng. 10, 87-114]. The planar anthracycline moiety of adriamycin intercalates between the base pairs whereas the sugar moiety fits into the DNA large groove. However, the cardiotoxicity of adriamycin places a limit on the total dose that may be given [Minow, R. A., Banjamin, R.S., & Gottlieb, J. A. (1975) Cancer Chemother. Rep. 6, 195-202]. Much evidence suggests that the mitochondrial membrane could be the target responsible for adriamycin cardiotoxicity. The formation of a very stable complex between adriamycin and cardiolipin, a phospholipid specific to the inner mitochondrial membrane, has been shown to inhibit several mitochondrial membrane enzymes whose activities depend on the presence of cardiolipin. Using attenuated total reflection infrared spectroscopy, we demonstrate here that, in the adriamycin-cardiolipin complex, both cardiolipin and adriamycin structures are modified as compared with the pure substances. Dichroism values indicate a slight reorientation of the cardiolipin molecule toward a normal to the plane of the bilayer whereas adriamycin, which shows no ordering in a pure phase, is highly ordered in the complex, the anthracycline moiety titled at about 40 degrees with respect to the normal to the plane of the bilayer. The partial disappearance of NH3+ characteristic bands indicates the involvement of the positively charged amino group of adriamycin in the complex formation. 相似文献
14.
15.
G Vandenbussche A Clercx M Clercx T Curstedt J Johansson H J?rnvall J M Ruysschaert 《Biochemistry》1992,31(38):9169-9176
Attenuated total reflection Fourier transform infrared spectroscopy was used to investigate the secondary structure of the surfactant protein SP-B. Nearly half of the polypeptide chain is folded in an alpha-helical conformation. No significant change of the secondary structure content was observed when the protein is associated to a lipid bilayer of dipalmitoylphosphatidylcholine (DPPC)/phosphatidylglycerol (PG) or of dipalmitoylphosphatidylglycerol (DPPG). The parameters related to the gamma w(CH2) vibration of the saturated acyl chains reveal no modification of the conformation or orientation of the lipids in the presence of SP-B. A model of orientation of the protein at the lipid/water interface is proposed. In this model, electrostatic interactions between charged residues of SP-B and polar headgroups of PG, and the presence of small hydrophobic alpha-helical peptide stretches slightly inside the bilayers, would maintain SP-B at the membrane surface. 相似文献
16.
The pore-forming domain of colicin A (pfColA) fused to a prokaryotic signal peptide (sp-pfColA) is transported across and inserts into the inner membrane of Escherichia coli from the periplasmic side and forms a functional channel. The soluble structure of pfColA consists of a ten-helix bundle containing a hydrophobic helical hairpin. Here, we generated a series of mutants in which an increasing number of sp-pfColA alpha-helices was deleted. These peptides were tested for their ability to form ion channels in vivo and in vitro. We found that the shortest sp-pfColA mutant protein that killed Escherichia coli was composed of the five last alpha-helices of sp-pfColA, whereas the shortest peptide that formed a channel in planar lipid bilayer membranes similar to that of intact pfColA was the protein composed of the last six alpha-helices. The peptide composed of the last five alpha-helices of pfColA generated a voltage-independent conductance in planar lipid bilayer with properties very different from that of intact pfColA. Thus, helices 1 to 4 are unnecessary for channel formation, while helix 5, or some part of it, is important but not absolutely necessary. Voltage-dependence of colicin is evidently controlled by the first four alpha-helices of pfColA. 相似文献
17.
Sánchez-Bautista S Kazaks A Beaulande M Torrecillas A Corbalán-García S Gómez-Fernández JC 《The FEBS journal》2006,273(14):3273-3286
The secondary structure of the catalytic domain from protein kinase C zeta was studied using IR spectroscopy. In the presence of the substrate MgATP, there was a significant change in the secondary structure. After heating to 80 degrees C, a 14% decrease in the alpha-helix component was observed, accompanied by a 6% decrease in the beta-pleated sheet; no change was observed in the large loops or in 3(10)-helix plus associated loops. The maximum increase with heating was observed in the aggregated beta-sheet component, with an increase of 14%. In the presence of MgATP, and compared with the sample heated in its absence, there was a substantial decrease in the 3(10)-helix plus associated loops and an increase in alpha-helix. Synchronous 2D-IR correlation showed that the main changes occurred at 1617 cm(-1), which was assigned to changes in the intermolecular aggregated beta-sheet of the denaturated protein. This increase was mainly correlated with the change in alpha-helix. In the presence of MgATP, the main correlation was between aggregated beta-sheet and the large loops component. The asynchronous 2D-correlation spectrum indicated that a number of components are transformed in intermolecularly aggregated beta-sheet, especially the alpha-helix and beta-sheet components. It is interesting that changes in 3(10)-helix plus associated loops and in alpha-helix preceded changes in large loops, which suggests that the open loops structure exists as an intermediate state during denaturation. In summary, IR spectroscopy revealed an important effect of MgATP on the secondary structure and on the thermal unfolding process when this was induced, whereas 2D-IR correlation spectroscopy allowed us to show the establishment of the denaturation pathway of this protein. 相似文献
18.
The Fourier-transform infrared spectroscopy (FTIR) technique with a diamond anvil cell has been applied for examination of the pressure-induced changes occurring in the secondary structure of the alpha-lactalbumin. This is the first high-pressure FTIR study of a calcium-binding protein which simultaneously takes into account spectral changes in both the calcium-ion-binding carboxyl groups' band and the amide I/I' vibrational band. Spectral behavior of three kinds of the protein: the undeuterated holoform, the fully deuterated holoform, and the undeuterated apoform was compared in the pressure range from 0.1 MPa up to 740 MPa. We found that the binding of calcium remarkably stabilizes the alpha-lactalbumin against pressure as it is followed approximately by a 200-MPa increase of the value of pressure at which denaturation occurs. A quantitative analysis of the band of antisymmetrical stretching vibrations of the calcium-binding carboxyl groups revealed that the pressure-induced changes in the calcium-binding loop occur in two stages. Binding of the calcium ion seemingly increases the pressure-stability of the calcium-binding loop to a higher degree than the pressure-stability of the secondary structure of the alpha-lactalbumin. We have also discussed in detail the complex pressure-enhanced H/D exchange in the alpha-lactalbumin. Finally, we have proposed a new assignment of major peaks in the helical region of the amide I/I' spectral band of the partially deuterated alpha-lactalbumin. 相似文献
19.
Abrecht H Goormaghtigh E Ruysschaert JM Homble F 《The Journal of biological chemistry》2000,275(52):40992-40999
Two VDAC (voltage-dependent anion-selective channel) isoforms were purified from seed cotyledons of Phaseolus vulgaris by chromatofocusing chromatography. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was used to study the structural properties of the two isoforms reconstituted in a mixture of asolectin and 5% stigmasterol. The IR spectra of the two VDAC isoforms were highly similar indicating 50 to 53% anti-parallel beta-sheet. The orientation of the beta-strands relative to the barrel axis was calculated from the experimentally obtained dichroic ratios of the amide I beta-sheet component and the amide II band. Comparing the IR spectra of the reconstituted VDAC isoforms with the IR spectra of the bacterial porin OmpF, for which a high resolution structure is available, provided evidence for a general structural organization of the VDAC isoforms similar to that of bacterial porins. Hydrogen-deuterium exchange measurements indicated that the exchange of the amide protons occurs to a higher extent in the two VDAC isoforms than in the OmpF porin. 相似文献
20.
Solid-state NMR spectroscopy was employed to study the molecular dynamics of the colicin Ia channel domain in the soluble and membrane-bound states. In the soluble state, the protein executes small-amplitude librations (with root-mean-square angular fluctuations of 0-10 degrees ) in the backbone and larger-amplitude motions (16-17 degrees ) in the side chains. Upon membrane binding, the motional amplitudes increase significantly for both the backbone (12-16 degrees ) and side chains (23-29 degrees ), as manifested by the reduction in the C-H and H-H dipolar couplings and (15)N chemical shift anisotropy. These motions occur not only on the pico- to nanosecond time scales, but also on the microsecond time scale, as revealed by the (1)H rotating-frame spin-lattice relaxation times. Average motional correlation times of 0.8 and 1.2 micros were extracted for the soluble and membrane-bound states, respectively. In comparison, both forms of the colicin Ia channel domain are completely immobile on the millisecond scale. These results indicate that the colicin Ia channel domain has enhanced conformational mobility in the lipid bilayer compared to the soluble state. This membrane-induced mobility increase is consistent with the loss of tertiary structure of the protein in the membrane, which was previously suggested by the extended helical array model [Zakharov et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 4282-4287]. An extended structure would also facilitate protein interactions with the mobile lipids and thus increase the protein internal motions. We speculate that the large mobility of the membrane-bound colicin Ia channel domain is a prerequisite for channel opening in the presence of a voltage gradient. 相似文献