首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The high-affinity receptor for IgE is a tetrameric complex of subunits of the type alpha beta gamma 2. We report here conformational studies of the intact gamma subunit in trifluoroethanol and water/liposomes by circular dichroism and Fourier-transform infrared (FTIR) spectroscopy. In trifluoroethanol, the FTIR amide I' frequencies were consistent with two predominant conformational components, the beta-turn and alpha-helix, whilst in liposomes consisting of D2O and dimyristoylglycerophosphocholine (Myr2GroPCho), three components were observed. The third component present may contain some left-handed extended helix. Spectral simulation was carried out to demonstrate that the CD spectra were consistent with the component conformations identified from FTIR spectroscopy. The stimulated CD spectra were in excellent agreement with the experimental spectra. The intact gamma subunit conformation in trifluoroethanol was shown to possess 72% alpha-helical and 28% beta-turn conformations. In water/Myr2GroPCho liposomes the percentage of each conformational component present is 37%, 38% and 25% for the alpha-helix, beta-turn and extended structures, respectively. Assuming that the transmembrane fragment was alpha-helical, an excellent correlation was found between this derived alpha-helical content in water/liposomes (37%) and from hydrophobicity plots where the percentage of amino acids in the transmembrane domain is predicted by others to be 34%. It is suggested that the beta-turn detected by CD and FTIR was attributable to a 3(10) helix rather than a type I or type III reverse turn.  相似文献   

2.
We have studied the conformation of the peptide Ac-EPKRSVAFKKTKKEVKKVATPKK (CH-1), free in solution and bound to the DNA, by Fourier-transform infrared spectroscopy. The peptide belongs to the COOH-terminal domain of histone H1(0) (residues 99-121) and is adjacent to the central globular domain of the protein. In aqueous (D(2)O) solution the amide I' is dominated by component bands at 1643 cm(-1) and 1662 cm(-1), which have been assigned to random coil conformations and turns, respectively. In accordance with previous NMR results, the latter component has been interpreted as arising in turn-like conformations in rapid equilibrium with unfolded states. The peptide becomes fully structured either in 90% trifluoroethanol (TFE) solution or upon interaction with the DNA. In these conditions, the contributions of turn (1662 cm(-1)) and random coil components virtually disappear. In TFE, the spectrum is dominated by the alpha-helical component (1654 cm(-1)). The band at 1662 cm(-1) shifts to 1670 cm(-1), and has been assigned to the COOH-terminal TPKK motif in a more stable turn conformation. A band at 1637 cm(-1), also present in TFE, has been assigned to 3(10) helical structure. The amide I' band of the complexes with the DNA retains the components that were attributed to 3(10) helix and the TPKK turn. In the complexes with the DNA, the alpha-helical component observed in TFE splits into two components at 1657 cm(-1) and 1647 cm(-1). Both components are inside the spectral region of alpha-helical structures. Our results support the presence of inducible helical and turn elements, both sharing the character of DNA-binding motifs.  相似文献   

3.
Fourier transform infrared (FTIR) spectroscopy has been used to examine the conformationally sensitive amide I' bands of calmodulin and troponin C. These are observed to undergo a sequence of spectroscopic changes which reflect conformational rearrangements that take place when Ca2+ is bound. Calmodulin and troponin C show similar though not identical changes on Ca2+ binding, and the effect of Mg2+ on troponin C is quite different from that of Ca2+. Both proteins show absorption maxima in the amide I' region at 1644 cm-1 which is significantly lower in frequency than has been generally observed for proteins that contain a high percentage of alpha-helix. It is proposed that an unusually high proportion of the helices in the structures of these proteins are distorted from the normal alpha-helical configuration such that the carbonyl stretching frequencies are lowered. It is further proposed that the shift to lower frequency is due to backbone carbonyl groups in the distorted helices that form strong hydrogen bonds with solvent molecules. A decrease in intensity at 1654 cm-1, the normal frequency assignment for alpha-helical structure, is observed as Ca2+ binds to calmodulin and troponin C. This suggests that Ca2+ binding results in a net decrease in "normal" alpha-helix conformation. There is a corresponding increase in intensity of the band at 1644 cm-1, possibly due to an increase in distorted helix content, allowing for a net increase in helix consistent with circular dichroism estimates of the Ca2+-dependent changes in helix content in calmodulin.  相似文献   

4.
Solvation and desolvation dynamics around helices during the kinetic folding process of apomyoglobin (apoMb) were investigated by using time-resolved infrared (IR) spectroscopy based on continuous-flow rapid mixing devices and an IR microscope. The folding of apoMb can be described by the collapse and search mechanism, in which the initial collapse occurring within several hundreds of microseconds is followed by the search for the correct secondary and tertiary structures. The time-resolved IR measurements showed a significant increase in solvated helix possessing a component of amide I' at 1633 cm(-1) within 100 mus after initiating the folding by a pD jump from pD2.2 to 6.0. In contrast, there was a minor increase in buried helices having amide I' at 1652 cm(-1) in this time domain. The observations demonstrate that the initially collapsed conformation of apoMb possesses a large amount of solvated helices, and suggest that much water is retained inside the collapsed domain. The contents of solvated and buried helices decrease and increase, respectively, in the time domain after the collapse, showing that the stepwise desolvation around helices is associated with the conformational search process. Interestingly, the largest changes in solvated and buried helices were observed at the final rate-limiting step of the apoMb folding. The persistence of the solvated helix until the final stage of apoMb folding suggests that the dissociation of hydrogen bonds between water and main-chain amides contributes to the energy barrier in the rate-determining step of the folding.  相似文献   

5.
Bcl-2 is a protein which inhibits programmed cell death. It is associated to many cell membranes such as mitochondrial outer membrane, endoplasmic reticulum, and nuclear envelope, apparently through a C-terminal hydrophobic domain. We have used infrared spectroscopy to study the secondary structure of a synthetic peptide (a 23mer) with the same sequence as this C-terminal domain (residues 217-239) of Bcl-2. The spectrum of this peptide in D(2)O buffer shows an amide I' band with a maximum at 1622 cm(-1), which clearly indicates its tendency to aggregate in aqueous solvent. However, the peptide incorporated in multilamellar phosphatidylcholine membranes shows a totally different spectrum of the amide I' band, with a maximum at 1655 cm(-)(1), indicating a predominantly alpha-helical structure. Addition of the peptide to unilamellar vesicles destabilized them and released encapsulated carboxyfluorescein. Differential scanning calorimetry of dimyristoylphosphatidylcholine multilamellar vesicles in which the peptide was incorporated revealed that increasing concentrations of the peptide progressively broadened the pretransition and the main transition, as is to be expected for a membrane integral molecule. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene in fluid phosphatidylcholine vesicles showed that increasing concentrations of the peptide produced increased polarization values, pointing to an increase in the apparent order of the membrane and indicating that high concentrations of the peptide considerably broaden the phase transition of dimyristoylphosphatidylcholine multilamellar vesicles. Quenching the intrinsic fluorescence of the Tyr-235 of the peptide, by KI, indicated that this aminoacyl residue is highly exposed to aqueous solvent when incorporated in phospholipid vesicles. The results are discussed in terms of their relevance to the proposed topology of insertion of Bcl-2 into biological membranes.  相似文献   

6.
Copps J  Murphy RF  Lovas S 《Biopolymers》2007,88(3):427-437
TC5b is a 20 residue polypeptide notable for its compact tertiary structure, a rarity for a short peptide. This structure is due to the "Trp-cage" motif, an association of aromatic, Pro, and Gly residues. The structure of TC5b has been fully characterized by NMR and electronic circular dichroism (ECD) studies, but has never been studied with vibrational circular dichroism (VCD) spectroscopy, which may reveal finer structure. In this study, we examine the VCD spectra of TC5b to characterize the spectroscopic signature of the peptide and its comprising structural elements. TC5b exhibited a negative-positive-negative triplet which is associated with alpha-helical structure in deuterated solvents but also signs of a polyproline II (PPII) helix in the amide I' region. Detection of this element was complicated by the aforementioned triplet form, as well as by an upfrequency shift in PPII helical elements due to the use of the deuterated organic solvents DMSO-d(6) and TFE-d(1). Nevertheless, while ECD spectra showed only alpha-helical structure for TC5b, VCD spectroscopy revealed a more complex structure which was in agreement with NMR results. VCD spectroscopy also showed a rapid conformational change of the peptide at temperatures above 35 degrees C in D(2)O and in aqueous solvent with greater than 75% DMSO-d(6) content. Molecular dynamics (MD) simulations to investigate this latter effect of DMSO-d(6) on TC5b were conducted in DMSO and 50% (v/v) DMSO in H(2)O. In DMSO unfolding of the peptide was rapid while in 50% (v/v) DMSO in H(2)O the unfolding was more gradual.  相似文献   

7.
The 97-residue M2 protein from Influenza A virus forms H+-selective ion channels which can be attributed solely to the homo-tetrameric alpha-helical transmembrane domain. Site-directed infrared dichroism spectra were obtained for the transmembrane domain of M2, reconstituted in lipid vesicles. Data analysis yielded the helix tilt angle beta=31.6(+/-6.2) degrees and the rotational pitch angle about the helix axis for residue Ala29 omegaAla29=-59.8(+/-9.9) degrees, whereby omega is defined as zero for a residue located in the direction of the helix tilt. A structure was obtained from an exhaustive molecular dynamics global search protocol in which the orientational data are utilised directly as an unbiased refinement energy term. Orientational refinement not only allowed selection of a unique structure but could also be shown to increase the convergence towards that structure during the molecular dynamics procedure. Encouragingly, the structure obtained is highly consistent with all available mutagenesis and conductivity data and offers a direct chemical insight that relates the altered functionality of the channel to its structure.  相似文献   

8.
Phospholamban is a 52-amino acid residue membrane protein that regulates Ca(2+)-ATPase activity in the sarcoplasmic reticulum of cardiac muscle cells. The hydrophobic C-terminal 28 amino acid fragment of phospholamban (hPLB) anchors the protein in the membrane and may form part of a Ca(2+)-selective ion channel. We have used polarized attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy along with site-directed isotope labeling to probe the local structure of hPLB. The frequency and dichroism of the amide I and II bands appearing at 1658 cm-1 and 1544 cm-1, respectively, show that dehydrated and hydrated hPLB reconstituted into dimyristoylphosphatidycholine bilayer membranes is predominantly alpha-helical and has a net transmembrane orientation. Specific local secondary structure of hPLB was probed by incorporating 13C at two positions in the protein backbone. A small band seen near 1614 cm-1 is assigned to the amide I mode of the 13C-labeled amide carbonyl group(s). The frequency and dichroism of this band indicate that residues 39 and 46 are alpha-helical, with an axial orientation that is approximately 30 degrees relative to the membrane normal. Upon exposure to 2H2O (D2O), 30% of the peptide amide groups in hPLB undergo a slow deuterium/hydrogen exchange. The remainder of the protein, including the peptide groups of Leu-39 and Leu-42, appear inaccessible to exchange, indicating that most of the hPLB fragment is embedded in the lipid bilayer. By extending spectroscopic characterization of PLB to include hydrated, deuterated as well as site-directed isotope-labeled hPLB films, our results strongly support models of PLB that predict the existence of an alpha-helical hydrophobic region spanning the membrane domain.  相似文献   

9.
Centrin is a low molecular mass (20 kDa) protein that belongs to the EF-hand superfamily of calcium-binding proteins. Local and overall changes were investigated for interactions between cations and Chlamydomonas centrin using Fourier transform infrared (FT-IR) and circular dichroic (CD) spectroscopies. FT-IR spectral features studied included the amide I' band and the side-chain absorbances for aspartate residues located almost exclusively at the calcium-binding sites in the spectral region of 1700-1500 cm(-1). The amide I' band is exquisitely sensitive to changes in protein secondary structure and is observed to shift from 1626.5 to 1642.7 cm(-1) in the presence and absence of calcium. These spectral bands are complex and were further studied using two-dimensional Fourier transform infrared (2D-FT-IR) correlation along with curve-fitting routines. Using these methods the secondary structure contributions were determined for holocentrin and apocentrin. The alpha-helical content in centrin was determined to be 60%-53% in the presence and absence of cations, respectively. Furthermore, the beta-strand content was determined to be 12%-36%, while the random coil component remained almost constant at 7%-13.5% in the presence and absence of cations, respectively. Changes in the side-chain band are mostly due to the monodentate coordination of aspartate to the cation. A shift of approximately 4 cm(-1) (for the COO- antisymmetric stretch in Asp) from 1565 to 1569 cm(-1) is observed for apocentrin and holocentrin, respectively. Thermal dependence revealed reversible conformational transition temperatures for apocentrin at 37 degrees C and holocentrin at 45 degrees C, suggesting greater stability for holocentrin.  相似文献   

10.
The structure of the membrane bound state of the 178-residue thermolytic COOH-terminal channel forming peptide of colicin E1 was studied by polarized Fourier transform infrared (FTIR) spectroscopy. This fragment was reconstituted into DMPC liposomes at varying peptide/lipid ratios ranging from 1/25-1/500. The amide I band frequency of the protein indicated a dominant alpha-helical secondary structure with limited beta- and random structures. The amide I and II frequencies are at 1,656 and 1,546 cm-1, close to the frequency of the amide I and II bands of rhodopsin, bacteriorhodopsin and other alpha-helical proteins. Polarized FTIR of oriented membranes revealed that the alpha-helices have an average orientation less than the magic angle, 54.6 degrees, relative to the membrane normal. Almost all of the peptide groups in the membrane-bound channel protein undergo rapid hydrogen/deuterium (H/D) exchange. These results are contrasted to the alpha-helical membrane proteins, bacteriorhodopsin, and rhodopsin.  相似文献   

11.
The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.  相似文献   

12.
Changes in the secondary structure and aggregation of chymotrypsinogen were investigated by infrared difference spectroscopy in conjunction with temperature and pressure tuning IR spectroscopy; both the amide I' band and side chain bands were studied. A prominent component of the amide I' band in the difference spectrum obtained upon cooling a chymotrypsinogen solution, or increasing the hydrostatic pressure, was observed in the region between 1627 and 1622 cm-1. Under denaturing conditions a white gel was formed, which is attributed to irreversible self-association or aggregation. This process was accompanied by the appearance of two new amide I' bands in the infrared spectrum of the protein: a very strong band at 1618 cm-1 and a weak band at 1685 cm-1. These bands are assigned to peptide segments with anti-parallel aligned beta-strands.  相似文献   

13.
A detailed comparison with the three-dimensional protein structure provides a stringent test of the models and parameters commonly used in determining the orientation of the alpha-helices from the linear dichroism of the infrared amide bands, particularly in membranes. The order parameters of the amide vibrational transition moments are calculated for the transmembrane alpha-helices of bacteriorhodopsin by using the crystal structure determined at a resolution of 1.55 A (PDB accession number 1C3W). The dependence on the angle delta(M) that the transition moment makes with the peptide carbonyl bond is fit by the expression ((3)/(2)S(alpha) cos(2) alpha)cos(2)(delta(M) + beta) - 1/2S(alpha), where S(alpha) (0.91) is the order parameter of the alpha-helices, alpha (13 degrees ) is the angle that the peptide plane makes with the helix axis, and beta (11 degrees ) is the angle that the peptide carbonyl bond makes with the projection of the helix axis on the peptide plane. This result is fully consistent with the model of nested axial distributions commonly used in interpreting infrared linear dichroism of proteins. Comparison with experimental infrared dichroic ratios for bacteriorhodopsin yields values of Theta(A) = 33 +/- 1 degree, Theta(I) = 39.5 +/- 1 degree, and Theta(II) = 70 +/- 2 degrees for the orientation of the transition moments of the amide A, amide I, and amide II bands, respectively, relative to the helix axis. These estimates are close to those found for model alpha-helical polypeptides, indicating that side-chain heterogeneity and slight helix imperfections are unlikely to affect the reliability of infrared measurements of helix orientations.  相似文献   

14.
M Ikura  L E Kay  M Krinks  A Bax 《Biochemistry》1991,30(22):5498-5504
Heteronuclear 3D and 4D NMR experiments have been used to obtain 1H, 13C, and 15N backbone chemical shift assignments in Ca(2+)-loaded calmodulin complexed with a 26-residue synthetic peptide (M13) corresponding to the calmodulin-binding domain (residues 577-602) of rabbit skeletal muscle myosin light-chain kinase. Comparison of the chemical shift values with those observed in peptide-free calmodulin [Ikura, M., Kay, L. E., & Bax, A. (1990) Biochemistry 29, 4659-4667] shows that binding of M13 peptide induces substantial chemical shift changes that are not localized in one particular region of the protein. The largest changes are found in the first helix of the Ca(2+)-binding site I (E11-E14), the N-terminal portion of the central helix (M72-D78), and the second helix of the Ca(2+)-binding site IV (F141-M145). Analysis of backbone NOE connectivities indicates a change from alpha-helical to an extended conformation for residues 75-77 upon complexation with M13. This conformational change is supported by upfield changes in the C alpha and carbonyl chemical shifts of these residues relative to M13-free calmodulin and by hydrogen-exchange experiments that indicate that the amide protons of residues 75-82 are in fast exchange (kexch greater than 10 s-1 at pH 7, 35 degrees C) with the solvent. No changes in secondary structure are observed for the first helix of site I or the C-terminal helix of site IV. Upon complexation with M13, a significant decrease in the amide exchange rate is observed for residues T110, L112, G113, and E114 at the end of the second helix of site III.  相似文献   

15.
16.
The conformation and amide hydrogen exchangeability of the hydrophobic peptide Lys2-Gly-Leu24-Lys2-Ala-amide were studied by Fourier transform infrared spectroscopy. In these studies information on the secondary structure of the peptide was obtained from an examination of the contours of both the amide I and amide II absorption bands. The conformationally sensitive amide I and amide II regions of the infrared spectra suggest that the peptide is predominantly alpha-helical and that it contains some non-alpha-helical structures which are probably in an extended conformation. Studies of the exchangeability of the amide protons of the peptide indicate that there are two populations of amide protons which differ markedly with respect to their exchangeability with the bulk solvent phase, whether the peptide is dissolved in methanol or dispersed in hydrated lipid bilayers. One population of amide protons is very readily exchangeable, and our data suggest that it arises primarily but not exclusively from the extended regions of the peptide. The other population exchanges very slowly with the bulk solvent and appears to originate entirely from the alpha-helical domain of the peptide. This latter population is virtually unexchangeable when the peptide is dispersed in hydrated phosphatidylcholine bilayers but can be largely exchanged when the peptide is solubilized with methanol. We suggest that this slowly exchanging population of amide protons arises from the central part of the hydrophobic polyleucine core which forms a very stable alpha-helix that would be deeply buried in the hydrophobic domain of hydrated lipid bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The structure of the pore-forming transmembrane domain of the nicotinic acetylcholine receptor from Torpedo has been investigated by infrared spectroscopy. Treatment of affinity-purified receptor with either Pronase or proteinase K digests the extramembranous domains (roughly 75% of the protein mass), leaving hydrophobic membrane-imbedded peptides 3-6 kDa in size that are resistant to peptide (1)H/(2)H exchange. Infrared spectra of the transmembrane domain preparations exhibit relatively sharp and symmetric amide I and amide II band contours centered near 1655 and 1545 cm(-)1, respectively, in both (1)H(2)O and (2)H(2)O. The amide I band is very similar to the amide I bands observed in the spectra of alpha-helical proteins, such as myoglobin and bacteriorhodopsin, that lack beta structure and exhibit much less beta-sheet character than is observed in proteins with as little as 20% beta sheet. Curve-fitting estimates 75-80% alpha-helical character, with the remaining peptides likely adopting extended and/or turn structures at the bilayer surface. Infrared dichroism spectra are consistent with transmembrane alpha-helices oriented perpendicular to the bilayer surface. The evidence strongly suggests that the transmembrane domain of the nicotinic receptor, the most intensively studied ligand-gated ion channel, is composed of five bundles of four transmembrane alpha-helices.  相似文献   

18.
The net orientation of nicotinic acetylcholine receptor transmembrane alpha-helices has been probed in both the activatable resting and nonactivatable desensitized states using linear dichroism Fourier-transform infrared spectroscopy. Infrared spectra recorded from reconstituted nicotinic acetylcholine receptor membranes after 72 h exposure to (2)H2O exhibit an intense amide I component band near 1655 cm(-1) that is due predominantly to hydrogen-exchange-resistant transmembrane peptides in an alpha-helical conformation. The measured dichroism of this band is 2.37, suggesting a net tilt of the transmembrane alpha-helices of roughly 40 degrees from the bilayer normal, although this value overestimates the tilt angle because the measured dichroism at 1655 cm(-1) also reflects the dichroism of overlapping amide I component bands. Significantly, no change in the net orientation of the transmembrane alpha-helices is observed upon agonist binding. In fact, the main changes in structure and orientation detected upon desensitization involve highly solvent accessible regions of the polypeptide backbone. Our data are consistent with a capping of the ligand binding site by the solvent accessible C-loop with little change in the structure of the transmembrane domain in the desensitized state. Changes in structure at the interface between the ligand-binding and transmembrane domains may uncouple binding from gating.  相似文献   

19.
Decatur SM 《Biopolymers》2000,54(3):180-185
The effect of N-acetylation on the conformation of alanine-rich helical peptides is examined using isotope-edited Fourier transform infrared (FTIR) spectroscopy. A series of peptides with sequence AA(AAKAA)(3)AAY has been prepared; each peptide incorporates four (13)C-labeled alanines. These peptides have two amide I' bands in their FTIR spectra: one corresponding to the (12)C amino acids, and one assigned to the (13)C amino acids. The intensity and frequency of the (13)C amide I' band varies systematically with the position of the labels in the sequence and the presence or absence of an N-acetyl capping group. The intensity of the (13)C amide I' band correlates with helix stability at the labeled residues as predicted by thermodynamic models of the helix-coil transition. These results suggest that FTIR spectroscopy combined with specific isotope labeling can be used to dissect the conformation of helical peptides at the residue level.  相似文献   

20.
Fourier-transform infrared spectroscopy was used to examine the secondary structure of rabbit liver cytochrome b5 and the polar and nonpolar domains of the protein. The data for both the polar and nonpolar domains agree well with those previously obtained by other physical techniques. In particular it was found that the nonpolar membrane-binding domain was predominantly alpha helix and that the polar domain was also highly helical, but not all alpha helix. The independence of the two domains in the whole molecule was, in general, confirmed by the additivity of the spectra of the two domains. The small differences that were seen indicate that there is a loss of alpha helix when the protein is cut into the two domains. In addition, there appeared to be a slight difference in the exposure to solvent of the amide NH groups in the alpha-helical portion of the nonpolar domain when it was examined in isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号