首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine D1 receptor (D1R) ligands may directly interact with the NMDA receptor (NMDAR), but detailed knowledge about this effect is lacking. Here we identify D1R ligands that directly modulate NMDARs and examine the contributions of NR2A and NR2B subunits to these interactions. Binding of the open channel blocker [(3)H]MK-801 in membrane preparations from rat- and mouse brain was used as a biochemical measure of the functional state of the NMDAR channel. We show that both D1R agonist A-68930 and dopamine receptor D2 antagonist haloperidol can decrease [(3)H]MK-801 binding with increased potency in membranes from the NR2A(-/-) mice (i.e. in membranes containing NR2B only), as compared to the inhibition obtained in wild-type membranes. Further, a wide range of D1R agonists such as A-68930, SKF-83959, SKF-83822, SKF-38393 and dihydrexidine were able to decrease [(3)H]MK-801 binding, all showing half maximal inhibitory concentrations ~20 μM, and with significant effects occurring at or above 1 μM. With membranes from D1R(-/-) mice, we demonstrate that these effects occurred through a D1R-independent mechanism. Our results demonstrate that dopamine receptor ligands can selectively influence NR2B containing NMDARs, and we characterize direct inhibitory NMDAR effects by different D1R ligands.  相似文献   

2.
The effect of N-methyl-D-aspartate (NMDA) receptor antagonists on cell viability was studied in rat primary cortical cells. NMDA antagonists [MK-801 and 2-amino-5-phosphonovalerate (APV)] induced cell shrinkage, nuclear condensation or fragmentation, and internucleosomal DNA fragmentation. Treatment of cells with MK-801 (an NMDA antagonist) for 1-2 days induced apoptotic cell death in a dose-dependent manner (1 nM to 10 microM). NMDA (25 microM), however, inhibited the MK-801 (0.1 microM)-induced apoptotic cell death. MK-801 and APV decreased the concentration of intracellular calcium ion. Activation of caspase-3 was accompanied by MK-801-induced cell death in a dose-dependent manner, and an inhibitor of caspase-3 reduced the cell death. Further, cycloheximide (0.2 microg/ml) completely protected the cells from MK-801-induced apoptotic cell death and caspase-3 activation. Insulin-like growth factor I completely attenuated MK-801-induced apoptotic cell death and caspase-3 activation. These results demonstrated that the moderate NMDA receptor activation is probably involved in the survival signal of the neuron.  相似文献   

3.
N-methyl-D-aspartate receptor (NMDAR) activity plays a key role in cerebral ischemia. Although NMDAR is also expressed in cardiomyocytes, little research has been performed on NMDAR activity in myocardial ischemia. Here, using an in vitro oxygen-glucose deprivation (OGD) cardiomyocyte model, we evaluated the effects of NMDAR activity upon calcium influx, viability, apoptosis, and investigated the roles of several key mitogen-activated protein kinases (MAPKs). Primary human neonatal cardiomyocytes were cultured under OGD conditions to mimic in vivo ischemic conditions. Enhancing NMDAR activity via NMDA significantly promoted calcium influx, decreased cell viability, increased apoptosis, and enhanced p38 MAPK phosphorylation in OGD cardiomyocytes (all P < 0.05). These effects were rescued by several calcium-channel blockers (ie, MK-801, La3+, Gap26 peptide, 18β-glycyrrhetinic acid) but most potently rescued via the NMDAR-specific antagonist MK-801 or removal of extracellular free calcium (all P < 0.05). Knocking-down p38 MAPK activity by small-molecule inhibition or genetic methods significantly increased cell viability and reduced apoptosis (all P < 0.05). Enhancing p38 MAPK activity abolished MK-801′s apoptosis-reducing effects in a p38 MAPK-dependent manner. In conclusion, NMDAR-driven calcium influx promotes apoptosis in ischemic human cardiomyocytes, an effect which can be attributed to enhanced p38 MAPK activity.  相似文献   

4.
While the roles of glutamic acid(Glu), arginine vasopressin(AVP) and their respective receptors in anxiety have been thoroughly investigated, the effects of interactions among Glu, N-methyl-D-aspartic acid(NMDA) receptor, AVP and a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid(AMPA) receptor on anxiety are still unclear. In the present study, the agonist and antagonist of the NMDA receptor and AMPA receptor, as well as the antagonist of AVP V1 receptor(V1aR) were introduced into BALB/cJ mice by intracerebroventricular microinjection, and the anxiety-like behaviors of the mice were evaluated by open field and elevated plus-maze tests. Compared with C57BL/6 mice, BALB/cJ mice displayed higher levels of anxiety-like behavior. Significant anxiolytic effects were found in the NMDA receptor antagonist(MK-801) and the AMPA receptor or V1 aR antagonist(SSRI49415), as well as combinations of AVP/MK-801 and SSRI49415/DNQX. These results indicated that anxiety-like behaviors expressed in BALB/CJ mice may be due to a coordination disorder among glutamate, NMDA receptor, AMPA receptor, AVP and V1 aR, resulting in the up-regulation of the NMDA receptor and V1 aR and down-regulation of the AMPA receptor. However, because the AMPA receptor can execute its anxiolytic function by suppressing AVP and V1 aR, we cannot exclude the possibility of the NMDA receptor being activated by AVP acting on V1 aR.  相似文献   

5.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

6.
RT-PCR demonstrated that ionotropic (iGluR NR1) and metabotropic (mGluR Group III) glutamate receptors are expressed in rodent lymphocytes. Flow cytometry showed that activation of iGluR NR1 by N-methyl-D-aspartate (NMDA) increased intracellular free calcium and reactive oxygen species (ROS) levels and activated caspase-3. The latter effect was attenuated by the NMDA antagonist, 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), by the antioxidant N-acetylcysteine and by cyclosporin A. Treatment with L-2-amino-4-phosphonobutyric acid (L-AP4), an mGluR Group III agonist, increased lymphocyte ROS levels but to a lower extent than did NMDA. Activation of lymphocytes with both NMDA and L-AP4 caused a synergistic increase in ROS levels and induced necrotic cellular death without elevating the caspase-3 activation observed in the presence of NMDA alone. These results show that lymphocyte iGluR NR1 and mGluR Group III receptors may be involved in controlling rodent lymphocyte functions and longevity as they regulate events in cell proliferation, maturation, and death.  相似文献   

7.
The N‐methyl d ‐aspartate type glutamate receptor (NMDAR) is a ligand‐gated cation channel that causes Ca2+ influx in nerve cells. An NMDAR agonist is effective to the sperm motility in fowls, although the actual role of NMDAR in sperm function is unknown. In the present study, RNA‐seq of the spermatogenic testes suggested the presence of NMDAR in the sperm of the newt Cynops pyrrhogaster. Glutamate of at least 0.7 ± 0.5 mM was detected in the egg‐jelly substances along with acrosome reaction‐inducing substance (ARIS) and sperm motility‐initiating substance (SMIS). In the egg‐jelly extract (JE) that included the ARIS and SMIS, the acrosome reaction was inhibited by a NMDAR antagonists, memantine and MK801. MK801 also inhibited the spontaneous acrosome reaction in Steinberg's salt solution (ST). Furthermore, memantine and MK801 suppressed the progressive motility of the sperm in JE and spontaneous waving of the undulating membrane, which is the tail structure giving thrust for forward motility, in ST. The spontaneous waving of the undulating membrane was promoted when Mg2+, which blocks Ca2+ influx through gated NMDARs, was removed from the ST. In addition, the ARIS‐induced acrosome reaction was inhibited by a selective antagonist of the transient receptor potential vanilloid 4, whose activation might result in the membrane depolarization to release Mg2+ from the NMDAR. These results suggest that NMDAR acts together with other cation channels in the induction of the acrosome reaction and motility of the sperm during the fertilization process of C. pyrrhogaster.  相似文献   

8.
Akira Takashima  Yumino Maeda  Shinji Itoh   《Peptides》1990,11(6):1263-1267
The effect of subcutaneous injection of caerulein on memory impairment induced by intracerebroventricular administration of NMDA receptor antagonists was examined in the passive avoidance response of the rat. When rats were treated with AP5, AP7, CPP or MK-801, the retention latencies decreased markedly. However, in rats that received caerulein immediately after the training trials, the latency increased to some extent. Pretreatment with caerulein and subsequent injection of the competitive NMDA receptor antagonists AP5, AP7 and CPP caused a more apparent increase in the latency. The noncompetitive NMDA receptor antagonist MK-801 was not affected by pretreatment with caerulein. The difference might be, at least in part, due to the sites of action of these NMDA receptor antagonists.  相似文献   

9.
Abstract: Transient forebrain or global ischemia in rats induces selective and delayed damage of hippocampal CA1 neurons. In a previous sludy, we have shown that expression of GIuR2, the kainate/a-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid (AMPA) receptor subunit that governs Ca' permeability, is preferentially reduced in CA1 at a time point proceeding neuronal degeneration. Postischemic administration of the selective AMPA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), protects CAI neurons against delayed death. In this study we examined the effects of NBQX (at a neuroprotective dose) and of MK-801 (a selective NMDA receptor anltagonist, not protective in this model) on kainate/AMPA receptor gene expression changes after global ischemia. We also examined the effects of transient forebrain ischemia on expression of the NMDA receptor subunit NMDARI. In ischemic rats treated with saline, GIuR2 and (31uR3 mRNAs were markedly reduced in CAI but were unchanged in CA3 or dentate gyrus. GluRl and NMDAR1 mRNAs were not significantly changed in any region examined. Administration of NBQX or MK-801 did not alter the ischemia-induced changes in kainate/AMPA receptor gene expression. These findings suggest that NBQX affords neuroprotection by a direct blockade of kainate/AMPA receptors, rather than by a modificatian of GIuR2 expression changes  相似文献   

10.
11.
Y Kloog  V Nadler  M Sokolovsky 《FEBS letters》1988,230(1-2):167-170
Binding of the labeled anticonvulsant drug [3H]dibenzocycloalkenimine (3H]MK-801) to the N-methyl-D-aspartate (NMDA) receptor and its dissociation from the receptor at 25°C are slow processes, both of which follow first order kinetics (t1/270 and 180 min, respectively). Both reactions are markedly accelerated by glutamate and glycine (t1/22-8 and 4 min, respectively), which allow bimolecular association kinetics of the labeled drug with the receptors whereas equilibrium binding of [3H]MK-801 (Kd 2–4 nM) is hardly affected by glutamate and glycine. The data suggest that MK-801 acts as a steric blocker of the NMDA receptor channel. The competitive antagonist D-(−)-2-amino-5-phosphovaleric acid (AP-5) freezes the receptor in a state which precludes either binding of [3H]MK-801 to the receptor channel or its dissociation from it. These findings have therapeutic implications.  相似文献   

12.
Abstract: The exposure of cultured rat hippocampal neurons to 500 µ M glutamate for 20 min induced a 55% decrease in the total Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) activity. The Ca2+-independent activity and autophosphorylation of CaM kinase II decreased to the same extent as the changes observed in total CaM kinase II activity, and these decreases in activities were prevented by pretreatment with MK-801, an N -methyl- d -aspartate (NMDA)-type receptor antagonist, and the removal of extracellular calcium but not by antagonists against other types of glutamate receptors and protease inhibitors. Similarly, the decrease in the CaM kinase II activity was induced by a Ca2+ ionophore, ionomycin. Immunoblot analysis with the anti-CaM kinase II antibody revealed a significant decrease in the amount of the enzyme in the soluble fraction, in contrast with the inverse increase in the insoluble fraction; thus, the translocation was probably induced during treatment of the cells with glutamate. These results suggest that glutamate released during brain ischemia induces a loss of CaM kinase II activity in hippocampal neurons, by stimulation of the NMDA receptor, and that inactivation of the enzyme may possibly be involved in the cascade of the glutamate neurotoxicity following brain ischemia.  相似文献   

13.
Yuan TT  Qiao H  Dong SP  An SC 《生理学报》2011,63(4):333-341
本文旨在探讨在慢性应激性抑郁发生过程中多巴胺D1受体对谷氨酸及其离子型受体的影响。实验通过建立慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)抑郁模型,结合海马微量注射多巴胺D1受体激动剂SKF38393、非竞争性N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体拮抗剂MK-801和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid,AMPA)受体的拮抗剂NBQX,运用糖水偏爱测试、旷场实验和悬尾实验等方法检测动物的行为表现,采用高效液相色谱法(high-performance liquid chromatography,HPLC)和Western blot实验来检测海马内谷氨酸含量及其离子型受体关键亚基的表达。结果显示,与对照组相比,CUMS组大鼠表现出明显的抑郁样行为变化,且海马谷氨酸含量升高,其NMDA受体的NR1亚基与AMPA受体的GluR2/3亚基也明显下调;注射SKF38393后可明显改善应激引起的抑郁样行为,且海马谷氨酸含量显...  相似文献   

14.
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists.  相似文献   

15.
We previously identified functional N-methyl-D-aspartate (NMDA) glutamate receptors in mature osteoclasts and demonstrated that they are involved in bone resorption in vitro. In the present work, we studied the expression of NMDA receptors (NMDAR) by osteoclast precursors and their role in osteoclastogenesis using two in vitro models, the murine myelomonocytic RAW 264.7 cell line and mouse bone marrow cells, both of which differentiate into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and Rank ligand (RankL). Using RT-PCR analysis with specific probes, we showed that RAW 264.7 cells and mouse bone marrow cells express mRNA of NMDAR subunits NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) A, B, and D. These subunits are expressed all along the differentiation sequence from undifferentiated precursors to mature resorbing osteoclasts. Semi-quantitative PCR analysis showed no regulation of the expression of these subunits during the differentiation process. Two specific non competitive antagonists of NMDAR, MK801 and DEP, dose-dependently inhibited osteoclast formation in both models, indicating that osteoclastogenesis requires the activation of NMDAR expressed by osteoclast precursors. MK801 had no effect when added only during the first 2 days of culture, suggesting that NMDAR are rather involved in the late stages of osteoclast formation. Finally, we demonstrated using Western-blotting and immunofluorescence that activation of NMDAR in RAW 264.7 cells by specific agonists induces nuclear translocation of NF-kappa B, a factor required for osteoclast formation. Altogether, our results indicate that osteoclast precursors express NMDAR that are involved in the osteoclast differentiation process through activation of the NF-kappa B pathway.  相似文献   

16.
17.
Early effects of experience on synaptic reorganization and behavior often involve activation of N-methyl-D -aspartate (NMDA) receptors. We have begun to explore the role of this glutamate-receptor subtype in the development of learned birdsong. Song learning in zebra finches occurs during a restricted period that coincides with extensive synaptic reorganization within neural regions controlling song behavior. In one brain region necessary for song learning, the lateral magnocellular nucleus of the anterior neostriatum (lMAN), NMDA receptor binding is twice as high at the onset of song learning as in adulthood. In the present study, we used quantitative autoradiography with the noncompetitive NMDA antagonist [3H]MK-801 to examine more closely the developmental decline in NMDA receptor binding within lMAN and found that it occurred gradually over the period of song learning and was not associated with a particular stage of the learning process. In addition, early isolation from conspecific song did not affect [3H]MK-801 binding in lMAN at 30, 60, or 80 days. Since behavioral studies confirmed that our isolate rearing conditions extended the sensitive period for song learning, we conclude that the normal developmental decline in overall NMDA receptor binding within lMAN does not terminate the capacity for song learning. Finally, early deafening, which prevents both stages of song learning, also did not affect [3H]MK-801 binding in lMAN at 80 days, indicating that the decline in NMDA receptor binding occurs in the absence of auditory experiences associated with song development. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) class of ionotropic glutamate receptors comprises four different subunits: iGluR1/iGluR2 and iGluR3/iGluR4 forming two subgroups. Three-dimensional structures have been reported only of the ligand-binding core of iGluR2. Here, we present two X-ray structures of a soluble construct of the R/G unedited flip splice variant of the ligand-binding core of iGluR4 (iGluR4i(R)-S1S2) in complex with glutamate or AMPA. Subtle, but important differences are found in the ligand-binding cavity between the two AMPA receptor subgroups at position 724 (Tyr in iGluR1/iGluR2 and Phe in iGluR3/iGluR4), which in iGluR4 may lead to displacement of a water molecule and hence points to the possibility to make subgroup specific ligands.  相似文献   

19.
Liu C  Min S  Wei K  Liu D  Dong J  Luo J  Liu XB 《生理学报》2012,64(4):387-402
This study explored the effect of the excitatory amino acid receptor antagonists on the impairment of learning-memory and the hyperphosphorylation of Tau protein induced by electroconvulsive shock (ECT) in depressed rats, in order to provide experimental evidence for the study on neuropsychological mechanisms improving learning and memory impairment and the clinical intervention treatment. The analysis of variance of factorial design set up two intervention factors which were the electroconvulsive shock (two level: no disposition; a course of ECT) and the excitatory amino acid receptor antagonists (three level: iv saline; iv NMDA receptor antagonist MK-801; iv AMPA receptor antagonist DNQX). Forty-eight adult Wistar-Kyoto (WKY) rats (an animal model for depressive behavior) were randomly divided into six experimental groups (n = 8 in each group): saline (iv 2 mL saline through the tail veins of WKY rats ); MK-801 (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats) ; DNQX (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats ); saline + ECT (iv 2 mL saline through the tail veins of WKY rats and giving a course of ECT); MK-801 + ECT (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats and giving a course of ECT); DNQX + ECT (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats and giving a course of ECT). The Morris water maze test started within 1 day after the finish of the course of ECT to evaluate learning and memory. The hippocampus was removed from rats within 1 day after the finish of Morris water maze test. The content of glutamate in the hippocampus of rats was detected by high performance liquid chromatography. The contents of Tau protein which included Tau5 (total Tau protein), p-PHF1(Ser396/404), p-AT8(Ser199/202) and p-12E8(Ser262) in the hippocampus of rats were detected by immunohistochemistry staining (SP) and Western blot. The results showed that ECT and the glutamate ionic receptor blockers (NMDA receptor antagonist MK-801 and AMPA receptor antagonist DNQX) induced the impairment of learning and memory in depressed rats with extended evasive latency time and shortened space exploration time. And the two factors presented a subtractive effect. ECT significantly up-regulated the content of glutamate in the hippocampus of depressed rats which were not affected by the glutamate ionic receptor blockers. ECT and the glutamate ionic receptor blockers did not affect the total Tau protein in the hippocampus of rats. ECT up-regulated the hyperphosphorylation of Tau protein in the hippocampus of depressed rats, while the glutamate ionic receptor blockers down-regulated it, and combination of the two factors presented a subtractive effect. Our results indicate that ECT up-regulates the content of glutamate in the hippocampus of depressed rats, which up-regulates the hyperphosphorylation of Tau protein resulting in the impairment of learning and memory in depressed rats.  相似文献   

20.
Vigilance and parallel occurrence of epileptic activity after administration of the 5-HT1A agonist 8-OH-DPAT and the NMDA receptor antagonist MK-801 were studied in the genetic absence epilepsy model WAG/Rij rats. Spike-wave discharges (SWD) were present predominantly in passive awake and light slow wave sleep (SWS1) either in control animals or after treatments. Injection of 8-OH-DPAT (20.0 μg/rat i.c.v.) caused marked increase and MK-801 (10.0 μg/rat i.c.v.) decrease in SWD densities, thus the ratios of SWD in passive awake and in SWS1. SWD densities of MK-801 plus 8-OH-DPAT in combination were similar to those of CSF+CSF treated control rats. Both 8-OH-DPAT and MK-801 transiently increased the duration of active awake, increased latency and decreased duration of rapid eye movement (REM) sleep. 8-OH-DPAT increased the amount of SWD despite the decrease in the duration of SWS1. MK-801 decreased the amount of SWD despite the lack of significant change in duration of passive awake or SWS1. Pre-treatment with MK-801 reversed 8-OH-DPAT- induced increase in duration of SWD without any effect on 8-OH-DPAT-induced changes in sleep parameters. Our studies provide evidence that 8-OH-DPAT-induced epileptic activity is independent of its effect on sleep, and that interaction of serotonergic and glutamatergic systems plays a role in the generation of SWD, but not in the regulation of vigilance and sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号