首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Vitamin C has inconsistent effects on malignant tumor cells, which vary from growth stimulation to apoptosis induction. It is well known that melanoma cells are more susceptible to vitamin C than any other tumor cells, but the precise mechanism remains to be elucidated. In the present study, the proliferation of B16F10 melanoma cells was suppressed by vitamin C, which induced growth arrest in a dose-dependent manner without cytotoxic effects. Therefore, we investigated the changes in cell cycle distribution of B16F10 melanoma cells by staining DNAs with propidium iodide (PI). The growth inhibition of B16F10 melanoma by vitamin C was associated with an arrest of cell cycle distribution at G1 stage. In addition, the levels of p53-p21Waf1/Cip1 increased during G1 arrest, which were essential for vitamin C-induced cell cycle arrest. The increased p21Waf1/Cip1 inhibited CDK2. Moreover, the activity of p53-p21Waf1/Cip1 pathway was closely related with the activation of checkpoint kinase 2 (Chk2). Inhibitor of the PI3K-family, LY294002 and the ATM/ATR inhibitor, caffeine, blocked vitamin C-induced growth arrest in B16F10 melanoma cells. These results suggest that vitamin C might be a potent agent to inhibit proliferative activity of melanoma cells via the regulation of Chk2-p53-p21Waf1/Cip1 pathway.  相似文献   

4.
Control over cell cycle exit is fundamental to the normal generation of the wide array of distinct cell types that comprise the mature vertebrate CNS. Here, we demonstrate a critical role for Cip/Kip class cyclin-kinase inhibitory (CKI) proteins in regulating this process during neurogenesis in the embryonic spinal cord. Using immunohistochemistry, we show that all three identified Cip/Kip CKI proteins are expressed in both distinct and overlapping populations of nascent and post-mitotic neurons during early neurogenesis, with p27(Kip1) having the broadest expression, and both p57(Kip2) and p21(Cip1) showing transient expression in restricted populations. Loss- and gain-of-function approaches were used to establish the unique and redundant functions of these proteins in spinal cord neurogenesis. Using genetic lineage tracing, we provide evidence that, in the absence of p57, nascent neurons re-enter the cell cycle inappropriately but later exit to begin differentiation. Analysis of p57(Kip2);p27(Kip1) double mutants, where p21 expression is confined to only a small population of interneurons, demonstrates that Cip/Kip CKI-independent factors initiate progenitor cell cycle exit for the majority of interneurons generated in the developing spinal cord. Our studies indicate that p57 plays a critical cell-autonomous role in timing cell cycle exit at G1/S by opposing the activity of Cyclin D1, which promotes cell cycle progression. These studies support a multi-step model for neuronal progenitor cell cycle withdrawal that involves p57(Kip2) in a central role opposing latent Cyclin D1 and other residual cell cycle promoting activities in progenitors targeted for differentiation.  相似文献   

5.
The molecular mechanisms that couple growth arrest and cell differentiation were examined during adipogenesis. Here, to understand the cyclin-dependent kinase inhibitor (CKI) genes involved in the progression of adipogenic differentiation, we examined changes in the protein and mRNA expression levels of CKI genes in vitro. During the onset of growth arrest associated with adipogenic differentiation, two independent families of CKI genes, p27Kip1 and p18INK4c, were significantly increased. The expressions of p27Kip1 and p18INK4c, regulated at the level of protein and mRNA accumulation, were directly coupled to adipogenic differentiation. This finding was supported by the inhibition of adipogenic differentiation caused by short interfering RNA (siRNA). In this study, we investigated the regulatory effects of transforming growth factor beta-1 (TGFβ-1) on CKI genes involved in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs). Only the up-regulation of p18INK4c during adipogenic differentiation, and not that of the p27Kip1 gene was prevented by treatment with TGFβ-1, one of the factors that inhibit adipogenesis in vitro. This finding indicates a close correlation between adipogenic differentiation and p18INK4c induction in hMSCs. Thus, these data demonstrate a role for the differentiation-dependent cascade expression of cyclin-dependent kinase inhibitors in regulating adipogenic differentiation, thereby providing a molecular mechanism that couples growth arrest and differentiation.  相似文献   

6.
7.
Epidermal stem cells maintain development and homeostasis of mammalian epidermis throughout life. However, the molecular mechanisms involved in the proliferation and differentiation of epidermal stem cells are far from clear. In this study, we investigated the effects of Wnt3a and Wnt/β-catenin signaling on proliferation and differentiation of human fetal epidermal stem cells. We found both Wnt3a and active β-catenin, two key members of the Wnt/β-catenin signaling, were expressed in human fetal epidermis and epidermal stem cells. In addition, Wnt3a protein can promote proliferation and inhibit differentiation of epidermal stem cells in vitro culture. Our results suggest that Wnt/β-catenin signaling plays important roles in human fetal skin development and homeostasis, which also provide new insights on the molecular mechanisms of oncogenesis in human epidermis.  相似文献   

8.
9.
Previous studies of the developing lens have shown that Notch signaling regulates differentiation of lens fiber cells by maintaining a proliferating precursor pool in the anterior epithelium. However, whether Notch signaling is further required after the onset of fiber cell differentiation is not clear. This work investigates the role of Notch2 and Jagged1 (Jag1) in secondary fiber cell differentiation using rat lens epithelial explants undergoing FGF-2 dependent differentiation in vitro. FGF induced Jag1 expression and Notch2 signaling (as judged by the appearance of activated Notch2 Intracellular Domain (N2ICD)) within 12-24 h. These changes were correlated with induction of the Notch effector, Hes5, upregulation of N-cadherin (N-cad), and downregulation of E-cadherin (E-cad), a cadherin switch characteristic of fiber cell differentiation. Induction of Jag1 was efficiently blocked by U0126, a specific inhibitor of MAPK/ERK signaling, indicating a requirement for signaling through this pathway downstream of the FGF receptor. Other growth factors that activate MAPK/ERK signaling (EGF, PDGF, IGF) did not induce Jag1. Inhibition of Notch signaling using gamma secretase inhibitors DAPT and L-685,458 or anti-Jag1 antibody markedly decreased FGF-dependent expression of Jag1 demonstrating Notch-dependent lateral induction. In addition, inhibition of Notch signaling reduced expression of N-cad, and the cyclin dependent kinase inhibitor, p57Kip2, indicating a direct role for Notch signaling in secondary fiber cell differentiation. These results demonstrate that Notch-mediated lateral induction of Jag1 is an essential component of FGF-dependent lens fiber cell differentiation.  相似文献   

10.
探讨FGFR1OP和p57/Kip2在非小细胞肺癌中的表达情况。选取58倒非小细胞肺癌手术切除标本,采用SP法进行免疫组织化学染色。FGFR1OP和p57/Kip2在肺癌中的阳性表达率分别为91.4%和56.9%。FGFR1OP的表达强度与肿瘤的分化程度、病理类型密切相关,在低分化腺癌(P=0.003)和低分化鳞癌(P=0.001)中的表达强度要高于高分化的腺癌和鳞癌,在鳞癌中的表达强度高于腺癌(P=0.002);与之相反,p57/Kip2随着肿瘤分化程度降低(腺癌P=0.008,鳞癌P=0.000),表达强度也显著下降,在鳞癌中的表达强度要低于腺癌(P=0.000)。FGFR1OP的高表达与p57/Kip2的低表达可能参与肿瘤的生长分化和进展,并提示预后不良。  相似文献   

11.
We report here a new targeting strategy for primary bone tumor and lung metastasis with a modified auxotrophic strain of Salmonella typhimurium. We have previously developed the genetically-modified strain of S. typhimurium, selected for tumor targeting and therapy in vivo. Normal tissue is cleared of these bacteria even in immunodeficient athymic mice with no apparent side effects. In this study, the tumor-targeting strain of S. typhimurium, termed A1-R, was administered i.v. to nude mice which have primary bone tumor and lung metastasis. Primary bone tumor was obtained by orthotopic intratibial injection of 5 x 105 143B-RFP (red fluorescent protein) human osteosarcoma cells. One group of mice was treated with A1-R expressing GFP (green fluorescent protein) and another group was used a as control. A1-R (5 x 107 colony-forming units) was injected in the tail vein three times on weekly basis. On day 28, lung samples were excised and observed with the Olympus OV100 Small Animal Imaging System. The size of the primary tumor and RFP intensity of lung metastasis were measured. Primary bone tumor size (fluorescence area [mm2]) was 232 ± 70 in the untreated group and 95 ± 23 in the treated group (P  相似文献   

12.
13.
The miR-302-367 cluster is specifically expressed in human embryonic stem cells and has been shown to convert human somatic cells into induced pluripotent stem cells. Here, we investigated the role of the miR-302-367 cluster in cervical carcinoma. The cluster was not endogenously expressed in cervical cancer cells, and its ectopic expression did not reprogram the cervical cancer cells to an embryonic stem cell-like state. However, ectopic expression of the miR-302-367 cluster in HeLa and SiHa cervical cancer cells inhibited cell proliferation and tumor formation by blocking the G1/S cell cycle transition. We identified a new cell cycle regulatory pathway in which the miR-302-367 cluster directly down-regulated both cyclin D1 and AKT1 and indirectly up-regulated p27Kip1 and p21Cip1, leading to the suppression of cervical cancer cell proliferation. Our findings suggest that the miR-302-367 cluster may be used as a therapeutic reagent for the treatment of cervical carcinoma.  相似文献   

14.
15.
16.
Induced pluripotent stem (iPS) cells are important for clinical application and stem cell research. Although human melanoma‐associated antigen A2 (hMAGEA2) expression is known to affect differentiation in embryonic stem cells, its specific role in iPS cells remains unclear. To evaluate the function of hMAGEA2 and its characteristics in iPS cells, we produced hMAGEA2‐overexpressing iPS cells from hMAGEA2‐overexpressing transgenic mice. Although the iPS cells with overexpressed hMAGEA2 did not differ in morphology, their pluripotency, and self‐renewal related genes (Nanog, Oct3/4, Sox2, and Stat3), expression level was significantly upregulated. Moreover, hMAGEA2 contributed to the promotion of cell cycle progression, thereby accelerating cell proliferation. Through embryoid body formation in vitro and teratoma formation in vivo, we demonstrated that hMAGEA2 critically decreases the differentiation ability of iPS cells. These data indicate that hMAGEA2 intensifies the self‐renewal, pluripotency, and degree of proliferation of iPS cells, while significantly repressing their differentiation efficiency. Therefore, our findings prove that hMAGEA2 plays key roles in iPS cells.  相似文献   

17.
The physiologically active form of vitamin D, 1,25-dihydroxyvitamin D(3), plays an important role not only in the establishment and maintenance of calcium metabolism, but also in regulating cell growth and differentiation. Because the clinical usefulness of 1,25-dihydroxyvitamin D(3) is limited by its tendency to cause hypercalcemia, new analogs with a better therapeutic profile have been synthesized, including ZK 156718. We compared the effects of 1,25-dihydroxyvitamin D(3) and ZK 156718 on growth, differentiation, and on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2). Whereas ZK 156718 at the concentration [10(-8) M] was as potent as 10(-6) M 1,25-dihydroxyvitamin D(3) in inducing differentiation and p21(Waf1/Cip1) expression, it was even more effective in inhibiting cell growth and stimulating p27(Kip1) expression than 1,25-dihydroxyvitamin D(3) itself. In summary, our study presents a new and potent vitamin D analog with a decreased metabolic stability, making it useful for the treatment of a diversity of clinical disorders.  相似文献   

18.
The cyclin-dependent kinase inhibitor p21CIP1/WAF1 (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0 mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10 mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart.  相似文献   

19.
20.
Strong activation of the ERK signal is required for hepatocyte growth factor (HGF) to inhibit proliferation of the human hepatocellular carcinoma cell line HepG2. However, it is still to be elucidated whether the activation alone is sufficient to induce the inhibitory effect. In this study, we constructed HepG2 cell clones expressing a high level of epidermal growth factor receptor (EGFR), and examined the effect of the strong activation of ERK on the proliferation of the cell clones. EGF treatment of the cell clones induced strong activation of ERK similar to HGF treatment, but did not inhibit cell proliferation. HGF treatment of the cell clones up-regulated the expression of a Cdk inhibitor p16(INK4a), which has previously been shown to be required to inhibit the proliferation of HepG2 cells, but EGF treatment did not. Furthermore, EGF treatment of the cell clones did not induce the up-regulation of another Cdk inhibitor p21(CIP1), whereas HGF treatment did. Knockdown of p21 by siRNA restored the proliferation of HepG2 cells inhibited by HGF, and restored Cdk2 activity suppressed in HGF-treated HepG2 cells. These results suggest that strong activation of ERK alone is not sufficient, and some other pathway(s), which is activated through the HGF receptor but not through EGFR, is also required to induce the up-regulation of p16 and p21 expression, and also suggest that in addition to the up-regulated expression of p16, that of p21 contributes to the suppression of Cdk2 activity leading to the inhibition of proliferation of HGF-treated HepG2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号