首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundMitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA).Scope of reviewThis paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function.Major conclusionsSeveral mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well.General significanceMouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.  相似文献   

2.
Human mitochondrial diseases are associated with a wide range of clinical symptoms, and those that result from mutations in mitochondrial DNA affect at least 1 in 8500 individuals. The development of animal models that reproduce the variety of symptoms associated with this group of complex human disorders is a major focus of current research. Drosophila represents an attractive model, in large part because of its short life cycle, the availability of a number of powerful techniques to alter gene structure and regulation, and the presence of orthologs of many human disease genes. We describe here Drosophila models of mitochondrial DNA depletion, deafness, encephalopathy, Freidreich's ataxia, and diseases due to mitochondrial DNA mutations. We also describe several genetic approaches for gene manipulation in flies, including the recently developed method of targeted mutagenesis by recombinational knock-in.  相似文献   

3.
In the yeast Saccharomyces cerevisiae, certain mutant alleles of YME4, YME6, and MDM10 cause an increased rate of mitochondrial DNA migration to the nucleus, carbon-source-dependent alterations in mitochondrial morphology, and increased rates of mitochondrial DNA loss. While single mutants grow on media requiring mitochondrial respiration, any pairwise combination of these mutations causes a respiratory-deficient phenotype. This double-mutant phenotype allowed cloning of YME6, which is identical to MMM1 and encodes an outer mitochondrial membrane protein essential for maintaining normal mitochondrial morphology. Yeast strains bearing null mutations of MMM1 have altered mitochondrial morphology and a slow growth rate on all carbon sources and quantitatively lack mitochondrial DNA. Extragenic suppressors of MMM1 deletion mutants partially restore mitochondrial morphology to the wild-type state and have a corresponding increase in growth rate and mitochondrial DNA stability. A dominant suppressor also suppresses the phenotypes caused by a point mutation in MMM1, as well as by specific mutations in YME4 and MDM10.  相似文献   

4.
Zheng J  Ji Y  Guan MX 《Mitochondrion》2012,12(3):406-413
Mitochondrial tRNA mutations are one of the important causes of both syndromic and non-syndromic deafness. Of those, syndromic deafness-associated tRNA mutations such as tRNA(Leu(UUR)) 3243A>G are often present in heteroplasmy, while non-syndromic deafness-associated tRNA mutations including tRNA(Ser(UCN)) 7445A>G often occur in homplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary mutations leading to hearing loss. However, other tRNA mutations such as tRNA(Thr) 15927G>A and tRNA(Ser(UCN)) 7444G>A may act in synergy with the primary mitochondrial DNA mutations, modulating the phenotypic manifestation of the primary mitochondrial DNA mutations. Theses tRNA mutations cause structural and functional alteration. A failure in tRNA metabolism caused by these tRNA mutations impaired mitochondrial translation and respiration, thereby causing mitochondrial dysfunctions responsible for deafness. These data offer valuable information for the early diagnosis, management and treatment of maternally inherited deafness.  相似文献   

5.
Mitochondrial dysfunction in hearing loss   总被引:3,自引:0,他引:3  
Mitochondrial pathology plays an important role in both inherited and acquired hearing loss. Inherited mitochondrial DNA mutations have been implicated in both syndromic and non-syndromic hearing loss, as well as in predisposition to aminoglycoside ototoxicity. Acquired mitochondrial dysfunction in the absence of mitochondrial DNA mutations has also been proposed as playing an important role in noise-induced and toxin-induced hearing loss. Presbycusis, the hearing loss associated with aging, may be caused by mitochondrial dysfunction resulting from the accumulation of acquired mitochondrial DNA mutations and other factors. The pathophysiological mechanisms and clinical implications of these findings are discussed.  相似文献   

6.

Background  

Mitochondrial DNA (mtDNA) is known for high mutation rates caused by lack of protective histones, inefficient DNA repair systems, and continuous exposure to mutagenic effects of oxygen radicals. Alterations in the non-coding displacement (D) loop of mitochondrial DNA are present in many cancers. It has been suggested that the extent of mitochondrial DNA mutations might be useful in the prognosis of cancer outcome and/or the response to certain therapies. In order to investigate whether a high incidence of mutations exist in mitochondrial DNA of cervical cancer patients, we examined the frequency of mutations in the D-loop region in 19 patients of cervical cancer.  相似文献   

7.
In the past century, considerable efforts were made to understand the role of mitochondrial DNA (mtDNA) mutations and of oxidative stress in aging. The classic mitochondrial free radical theory of aging, in which mtDNA mutations cause genotoxic oxidative stress, which in turn creates more mutations, has been a central hypothesis in the field for decades. In the past few years, however, new elements have discredited this original theory. The major sources of mitochondrial DNA mutations seem to be replication errors and failure of the repair mechanisms, and the accumulation of these mutations as observed in aged organisms seems to occur by clonal expansion and not to be caused by a reactive oxygen species-dependent vicious cycle. New hypotheses of how age-associated mitochondrial dysfunction may lead to aging are based on the role of reactive oxygen species as signaling molecules and on their role in mediating stress responses to age-dependent damage. Here, we review the changes that mtDNA undergoes during aging and the past and most recent hypotheses linking these changes to the tissue failure observed in aging.  相似文献   

8.
线粒体tRNA基因突变是导致感音神经性耳聋的原因之一.有些tRNA突变可直接造成耳聋的发生,称之为原发突变.如tRNALeu(UUR) A3243G等突变与综合征型耳聋相关,而tRNASer(UCN) T7511C等突变则与非综合征型耳聋相关.此外,继发突变如tRNAThr G15927A等突变则对原发突变起协同作用,影响耳聋的表型表达.这些突变可引起tRNA二级结构改变,从而影响线粒体蛋白质合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍可导致耳聋的发生.主要讨论与耳聋相关的线粒体tRNA突变及其致聋机理.  相似文献   

9.
10.
Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously expressed a highly metastatic potential, mitochondrial respiration defects, and ROS overproduction. Since mitochondrial respiratory function is controlled by both mtDNA and nuclear DNA, it is possible that nuclear DNA mutations contribute to the mitochondrial respiration defects and the highly metastatic potential found in MDA-MB-231 cells. To examine this possibility, we carried out mtDNA replacement of MDA-MB-231 cells by normal human mtDNA. For the complete mtDNA replacement, first we isolated mtDNA-less (ρ(0)) MDA-MB-231 cells, and then introduced normal human mtDNA into the ρ(0) MDA-MB-231 cells, and isolated trans-mitochondrial cells (cybrids) carrying nuclear DNA from MDA-MB-231 cells and mtDNA from a normal subject. The normal mtDNA transfer simultaneously induced restoration of mitochondrial respiratory function and suppression of the highly metastatic potential expressed in MDA-MB-231 cells, but did not suppress ROS overproduction. These observations suggest that mitochondrial respiration defects observed in MDA-MB-231 cells are caused by mutations in mtDNA but not in nuclear DNA, and are responsible for expression of the high metastatic potential without using ROS-mediated pathways. Thus, human tumor cells possess an mtDNA-mediated metastatic pathway that is required for expression of the highly metastatic potential in the absence of ROS production.  相似文献   

11.
Accumulation of mutations in mitochondrial DNA leads to the development of severe, currently untreatable diseases. The contribution of these mutations to aging and progress of neurodegenerative diseases is actively studied. Elucidation of DNA repair mechanisms in mitochondria is necessary for both developing approaches to the therapy of diseases caused by mitochondrial mutations and understanding specific features of mitochondrial genome functioning. Mitochondrial DNA repair systems have become a subject of extensive studies only in the last decade due to development of molecular biology methods. DNA repair systems of mammalian mitochondria appear to be more diverse and effective than it had been thought earlier. Even now, one may speak about the existence of mitochondrial mechanisms for the repair of single–and double–stranded DNA lesions. Homologous recombination also takes place in mammalian mitochondria, although its functional significance and molecular mechanisms remain obscure. In this review, I describe DNA repair systems in mammalian mitochondria, such as base excision repair (BER) and microhomology–mediated end joining (MMEJ) and discuss a possibility of existence of mitochondrial DNA repair mechanisms otherwise typical for the nuclear DNA, e.g., nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination, and classical non–homologous end joining (NHEJ). I also present data on the mechanisms for coordination of the nuclear and mitochondrial DNA repair systems that have been actively studied recently.  相似文献   

12.
Inherited mutations in the mitochondrial (mt)DNA are a major cause of human disease, with approximately 1 in 5000 people affected by one of the hundreds of identified pathogenic mtDNA point mutations or deletions. Due to the severe, and often untreatable, symptoms of many mitochondrial diseases, identifying how these mutations are inherited from one generation to the next has been an area of intense research in recent years. Despite large advances in our understanding of this complex process, many questions remain unanswered, with one of the most hotly debated being whether or not purifying selection acts against pathogenic mutations during germline development.  相似文献   

13.
The human gene C10orf2 encodes the mitochondrial replicative DNA helicase Twinkle, mutations of which are responsible for a significant fraction of cases of autosomal dominant progressive external ophthalmoplegia (adPEO), a human mitochondrial disease caused by defects in intergenomic communication. We report the analysis of orthologous mutations in the Drosophila melanogaster mitochondrial DNA (mtDNA) helicase gene, d-mtDNA helicase. Increased expression of wild type d-mtDNA helicase using the UAS-GAL4 system leads to an increase in mtDNA copy number throughout adult life without any noteworthy phenotype, whereas overexpression of d-mtDNA helicase containing the K388A mutation in the helicase active site results in a severe depletion of mtDNA and a lethal phenotype. Overexpression of two d-mtDNA helicase variants equivalent to two human adPEO mutations shows differential effects. The A442P mutation exhibits a dominant negative effect similar to that of the active site mutant. In contrast, overexpression of d-mtDNA helicase containing the W441C mutation results in a slight decrease in mtDNA copy number during the third instar larval stage, and a moderate decrease in life span in the adult population. Overexpression of d-mtDNA helicase containing either the K388A or A442P mutations causes a mitochondrial oxidative phosphorylation (OXPHOS) defect that significantly reduces cell proliferation. The mitochondrial impairment caused by these mutations promotes apoptosis, arguing that mitochondria regulate programmed cell death in Drosophila. Our study of d-mtDNA helicase overexpression provides a tractable Drosophila model for understanding the cellular and molecular effects of human adPEO mutations.  相似文献   

14.
Leber’s hereditary optic neuropathy (LHON) is an optic nerve dysfunction resulting from mutations in mitochondrial DNA (mtDNA), which is transmitted in a maternal pattern of inheritance. It is caused by three primary point mutations: G11778A, G3460A and T14484C; in the mitochondrial genome. These mutations are sufficient to induce the disease, accounting for the majority of LHON cases, and affect genes that encode for the different subunits of mitochondrial complexes I and III of the mitochondrial respiratory chain. Other mutations are secondary mutations associated with the primary mutations. The purpose of this study was to determine MT-ND variations in Iranian patients with LHON. In order to determine the prevalence and distribution of mitochondrial mutations in the LHON patients, their DNA was studied using PCR and DNA sequencing analysis. Sequencing of MT-ND genes from 35 LHON patients revealed a total of 44 nucleotide variations, in which fifteen novel variations—A14020G, A13663G, C10399T, C4932A, C3893G, C10557A, C12012A, C13934T, G4596A, T12851A, T4539A, T4941A, T13255A, T14353C and del A 4513—were observed in 27 LHON patients. However, eight patients showed no variation in the ND genes. These mutations contribute to the current database of mtDNA polymorphisms in LHON patients and may facilitate the definition of disease-related mutations in human mtDNA. This research may help to understand the disease mechanism and open up new diagnostic opportunities for LHON.  相似文献   

15.
Disorders caused by mitochondrial respiratory chain deficiency due to mutations in mitochondrial DNA have varied phenotypes but many involve neurological features often associated with cell loss within specific brain regions. These disorders, along with the increasing evidence of decline in mitochondrial function with ageing, have raised speculation that primary changes in mitochondria could have an important role in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Evidence supporting a role for mitochondria in common neurodegenerative diseases comes from studies with the toxin MPP+ and familial PD, which has been shown to involve proteins such as DJ-1 and Pink1 (both of which are predicted to have a role in mitochondrial function and oxidative stress). Mutations within the mitochondrial genome have been shown to accumulate with age and in common neurodegenerative diseases. Mitochondrial DNA haplogroups have also been shown to be associated with certain neurodegenerative conditions. This review covers the primary mitochondrial diseases but also discuss the potential role of mitochondria and mitochondrial DNA mutations in mitochondrial and neurodegenerative diseases, in particular in PD and in AD.  相似文献   

16.
线粒体DNA突变是引起听力损伤的重要原因之一. 其中,线粒体12S rRNA基因突变与综合征型耳聋和非综合征型耳聋相关. 导致综合征型耳聋的线粒体DNA突变多为异质性,然 而对于非综合征型耳聋突变则多以同质性或高度异质性存在,说明这种分子致病性需要较高的阈值. 位于12S rRNA解码区的A1555G和C1494T突变是造成氨基糖甙类抗生素耳毒性和 非综合征型耳聋常见的分子机制. 这些突变可能造成12S rRNA二级结构的改变,影响线粒体蛋白质的合成,降低细胞内ATP的产生,由此引起的线粒体功能障碍导致耳聋. 但是多数 基因突变的致病机制还仅处于推测阶段. 其它修饰因子如氨基糖甙类抗生素、线粒体单体型、核修饰基因参与了线粒体12S rRNA基因A1555G和C1494T突变相关的耳聋表型表达.  相似文献   

17.
Leber's hereditary optic neuropathy is a maternally inherited optic atrophy caused by mitochondrial DNA point mutations. Previous epidemiological studies have shown that individuals from mitochondrial genetic backgrounds (haplogroups) J/Uk and H have a higher and a lower risk, respectively, of suffering this disorder. To analyze the bases of these associations at cellular and molecular levels, functional studies with cybrids provide high quality evidence. Cybrids from haplogroup J contain less mitochondrial deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and synthesize a smaller amount of mitochondrial DNA-encoded polypeptides than those from haplogroup H. Haplogroup J cybrids also display lower oxygen consumption, mitochondrial inner membrane potential and total adenosine-5'-triphosphate (ATP) levels. Moreover, mitochondrial DNA levels correlate with many parameters of the oxidative phosphorylation system. These results suggest that the mitochondrial DNA amount determines oxidative phosphorylation capacity and, along with other recently published observations, support the possibility that mitochondrial DNA levels may be responsible for the bias of the disorder toward males, for the incomplete penetrance of mutations causing Leber's hereditary optic neuropathy and for the association of the disease with particular mitochondrial DNA haplogroups.  相似文献   

18.
Mitochondrial diseases in children are more frequently caused by mutations in nuclear DNA then in mtDNA. Special clinical phenotypes are associated with the mutations in SURF1 gene, in SCO2 gene and with mtDNA depletion syndromes. Leigh syndrome is the most common clinical presentation of various mitochondrial disorders during childhood. Elevation of lactate in blood, cerebrospinal fluid and urine is a simple biochemical marker of mitochondrial disorders but its specificity and sensitivity are low. Biochemical investigation of muscle biopsy and search for mitochondrial mutations remain a gold standard in the diagnosis. The standarized diagnostic criteria to establish level of diagnostic certainty (possible, probable, definite) are proposed to be used in practice; these include clinical features, neuroimaging and muscle biopsy investigations. Further research directions to improve our understanding of mitochondrial pathologies in children are suggested.  相似文献   

19.
Mitochondrial cytopathies are a heterogeneous group of systemic disorders caused by mutations in mitochondrial or nuclear genome. The review presents some data on pathogenic mutations in mitochondrial DNA leading to the imbalance in the oxidation phosphorylation processes and energy metabolism in the cells and eventually to the development of mitochondrial cytopathy. The pathways of medicated correction are examined, which are aimed at obtaining optimal energy efficiency of mitochondria with impaired functions, increase of the efficiency of energy metabolism in the tissues, as well as prevention of mitochondrial membrane damage by free radicals using antioxidants and membrane protectors. A conclusion is drawn on the inefficiency of currently used therapeutic strategies and the necessity of new approaches, which can be gene therapy of mitochondrial diseases. Some modern methods for gene defects correction, capable of restoring or removing the damaged gene, expressing full gene product, or blocking the mutant or strange genes work are analyzed. It is shown that the described approaches to the gene therapy of human mitochondrial diseases demand the introduction of foreign sequences into nuclear or mitochondrial genome of a living person, which completely excludes their practical application because of the uncertainty of the outcome. A perspective approach in solving this problem may be a creation of a system allowing the correction of defect genes without introducing synthetic nucleotides into the human genome. Phenotypic selection combined with a capacity of homologous recombination, artificially imparted to mitochondria of yeast Yarrowia lipolytica, allows for replication of intact human mitochondrial DNA in yeast mitochondria, supporting a full-size native human mitochondrial DNA in the yeast cells and eliminating pathogenic mutations by means of standard sitedirected PCR mutagenesis. After the correction in the Y. lipolytica cells, copies of mitochondrial DNA of an individual patient may be returned to him using the transfection of mesenchymal stromal cells followed by selection of transfectants grown in minimal culture media, in which the cells with higher respiratory mitochondrial activity will gain the advantage.  相似文献   

20.
Leber's hereditary optic neuroretinopathy (LHON) is manifested as a bilateral acute or subacute loss of central vision due to optic atrophy. It is linked to point mutations of mitochondrial DNA, which is inherited maternally. The most common mitochondrial DNA point mutations associated with LHON are G3460A, G11778A and T14484C. These mutations are linked with the defects of subunits of the complex I (NADH-dehydrogenase-ubiquinone reductase) in mitochondria. The G11778A mitochondrial DNA point mutation is manifested by a severe visual impairment. In this paper two Croatian families with the LHON G11778A mutation are presented. Three LHON patients from two families were younger males which had the visual acuity of 0.1 or below, the ophthalmoscopy revealed telangiectatic microangiopathy and papilloedema, while Goldmann kinetic perimetry showed a central scotoma. The mothers and female relatives were LHON mutants without symptoms, whereas their sons suffered from a severe visual impairment. Molecular diagnosis helps to explain the cause of LHON disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号