首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MiR-34a, a direct target of p53, has shown to exert potent anti-proliferative effects. It has also been found that miR-34a can be induced by irradiation in vitro and in vivo. However, the relationship between miR-34a and radio-sensitivity, and its potential diagnostic significance in radiation biology, remain unclear. This study found that differing responses to ionizing radiation (IR) of young and adult mice were related to miR-34a. First, we found that miR-34a could be induced in many organs by radiation of both young and adult mice. However, the level of miR-34a induced by young mice was much higher when compared to adult mice. Next, we found that miR-34a played a critical role in radio-sensitivity variations of different tissues by enhancing cell apoptosis and decreasing cell viability. We also found that the induction of miR-34a by radiation was in a p53 dependent manner and that one possible downstream target of miR-34a that lead to different radio-sensitivity was the anti-apoptosis molecular Bcl-2. However, over-expression of miR-34a and knockdown of Bcl-2 could significantly enhance the radio-sensitivity of different cells while inhibition of miR-34a could protect cells from radiation injury. Finally, we concluded that miR-34a could be stable in serum after IR and serve as a novel indicator of radiation injury. Taken together, this data strongly suggests that miR-34a may be a novel indicator, mediator and target of radiation injury, radio-sensitivity and radioprotection.  相似文献   

2.
miR-34是一类保守的、非编码miRNA。人类miR-34包括miR-34a、miR-34b和miR-34c等,在多种肿瘤中都呈现非正常表达。miR-34通过被p53激活,抑制E2F3、Bcl-2、c—myc、CDK4、CDK6、Cyclin D1以及Cyclin E2的表达,使肿瘤细胞停滞在G1期,抑制肿瘤细胞的生长,诱导肿瘤细胞凋亡,并通过E2F3、SIRT1与p53形成正反馈环路,不断增强其自身和p53的作用。本文就miR-34的研究进展进行综述。  相似文献   

3.
Autophagy refers to the genetically regulated process to regulate the survival and death of cells, which is conserved in evolution. Typically, autophagy exerts a vital part under physiopathological conditions. Whether autophagy can be resulted from chronic intermittent hypoxia (CIH), a prominent characteristic of obstructive sleep apnea-hypopnea syndrome (OSAHS), remains to be investigated. Furthermore, microRNAs (miRNAs) can serve as the regulating factors in a variety of benign and malignant diseases; nonetheless, it remains to be fully illustrated about the way by which miRNAs modulate autophagy. According to our results, for human coronary artery endothelial cells (HCAECs), CIH increased the expression of autophagy-associated proteins, which depended on the concentration and time; besides, it could promote autophagic vacuole (AV) formation. In addition, CIH could activate beclin 1, which was dependent on dose and time. In HCAECs, microRNA-34a-5p (miR-34a-5p) was overexpressed after exposed to CIH, and its target protein B-cell lymphoma 2 (Bcl-2) was downregulated. Moreover, inhibiting miR-34a-5p increased Bcl-2 and p62 expression, while downregulating beclin 1, Vps34, Atg5, and LC3 levels, implying the role of miR-34a-5p in CIH-induced autophagy. Moreover, exogenous upregulation of Bcl-2 could block miR-34a-5p influence on CIH-induced autophagy through suppressing beclin 1 expression. Additionally, beclin 1 could enhance the autophagy induced by CIH. In conclusion, overexpression of miR-34a-5p activated beclin 1 through Bcl-2 inhibition in CIH and participated in CIH-induced autophagy.  相似文献   

4.
5.
Human cell transformation is a key step for oncogenic development, which involves multiple pathways; however, the mechanism remains unclear. To test our hypothesis whether cell oncogenic transformation shares some mechanisms with the process of reprogramming non-stem cells to induced pluripotent stem cells (iPSC), we studied the relationship among the key factors for promoting or inhibiting iPSC in radiation-transformed human epithelial cell lines derived from different tissues (lung, breast and colon). We unexpectedly found that p63 and OCT4 were highly expressed (accompanied by low expressed p53 and miR-34a) in all transformed cell lines examined when compared with their non-transformed counterparts. We further elucidated the relationship of these factors: the 3p strand of miR-34a directly targeted OCT4 by binding to the 3′ untranslated region (3′-UTR) of OCT4 and, OCT4, in turn, stimulated p63 but inhibited p53 expression by binding to a specific region of the p63 or p53 promoter. Moreover, we revealed that the effects of OCT4 on promoting cell oncogenic transformation were by affecting p63 and p53. These results support that a positive loop exists in human cells: OCT4 upregulation as a consequence of inhibition of miR-34a, promotes p63 but suppresses p53 expression, which further stimulates OCT4 upregulation by downregulating miR-34a. This functional loop contributes significantly to cell transformation and, most likely, also to the iPSC process.  相似文献   

6.
7.
8.
The Arf tumor suppressor gene product, p19Arf, regulates cell proliferation in incipient cancer cells and during embryo development. Beyond its commonly accepted p53-dependent actions, p19Arf also acts independently of p53 in both contexts. One such p53-independent effect with in vivo relevance includes its repression of Pdgfrβ, a process that is essential for vision in the mouse. We have utilized cell culture-based and mouse models to define a new role for miR-34a in this process. Ectopic expression of Arf in cultured cells enhanced the expression of several microRNAs predicted to target Pdgfrß synthesis, including the miR-34 family. Because miR-34a has been implicated as a p53-dependent effector, we investigated whether it also contributed to p53-independent effects of p19Arf. Indeed, in mouse embryo fibroblasts (MEFs) lacking p53, Arf-driven repression of Pdgfrβ and its blockade of Pdgf-B stimulated DNA synthesis were both completely interrupted by anti-microRNA against miR-34a. Ectopic miR-34a directly targeted Pdgfrβ and a plasmid reporter containing wild-type Pdgfrβ 3′UTR sequence, but not one in which the miR-34a target sequence was mutated. Although miR-34a expression has been linked to p53—a well-known effector of p19ArfArf expression and its knockdown correlated with miR-34a level in MEFs lacking p53. Finally, analysis of the mouse embryonic eye demonstrated that Arf controlled expression of miR-34a, and the related miR-34b and c, in vivo during normal mouse development. Our findings indicate that miR-34a provides an essential link between p19Arf and its p53-independent capacity to block cell proliferation driven by Pdgfrβ. This has ramifications for developmental and tumor suppressor roles of Arf.  相似文献   

9.
Lung cancer represents the leading cause of cancer-related deaths in men and women worldwide. Targeted therapeutics, including the epidermal growth factor receptor (EGFR) inhibitor erlotinib, have recently emerged as clinical alternatives for the treatment of non-small cell lung cancer (NSCLC). However, the development of therapeutic resistance is a major challenge, resulting in low 5-year survival rates. Due to their ability to act as tumor suppressors, microRNAs (miRNAs) are attractive candidates as adjuvant therapeutics for the treatment of NSCLC. In this study, we examine the ability of 2 tumor suppressor miRNAs, let-7b and miR-34a to sensitize KRAS;TP53 mutant non-small cell lung cancer cells to the action of erlotinib. Treatment with these miRNAs, individually or in combination, resulted in synergistic potentiation of the anti-proliferative effects of erlotinib. This effect was observed over a wide range of miRNA and erlotinib interactions, suggesting that let-7b and miR-34a target oncogenic pathways beyond those inhibited by EGFR. Combinatorial treatment with let-7b and miR-34a resulted in the strongest synergy with erlotinib, indicating that these miRNAs can effectively target multiple cellular pathways involved in cancer cell proliferation and resistance to erlotinib. Together, our findings indicate that NSCLC cells can be effectively sensitized to erlotinib by supplementation with tumor suppressor miRNAs, and suggest that the use of combinations of miRNAs as adjuvant therapeutics for the treatment of lung cancer is a viable clinical strategy.  相似文献   

10.
Many microRNAs (miRNAs) play vital roles in the tumorigenesis and development of cancers. In this study, we aimed to identify the differentially expressed miRNAs and their specific mechanisms in non-small-cell lung cancer (NSCLC). Based on data from the GSE56036 database, miR-30a-5p expression was identified to be downregulated in NSCLC. Further investigations showed that overexpression of miR-30a-5p inhibited cell proliferation, migration, and promoted apoptosis in NSCLC. Increase of miR-30a-5p level could induce the increase of Bax protein level and decrease of Bcl-2 protein level. In addition, chromatin immunoprecipitation assays showed that miR-30a-5p expression was induced by binding of p53 to the promoter of MIR30A. Bioinformatics prediction indicated that miR-30a-5p targets SOX4, and western blot analysis indicated that overexpression of the miRNA decreases the SOX4 protein expression level, which in turn regulated the level of p53. Thus, this study provides evidence for the existence of a p53/miR-30a-5p/SOX4 feedback loop, which likely plays a key role in the regulation of proliferation, apoptosis, and migration in NSCLC, highlighting a new therapeutic target.  相似文献   

11.
The DNA damage response (DDR) triggers widespread changes in gene expression, mediated partly by alterations in micro(mi) RNA levels, whose nature and significance remain uncertain. Here, we report that miR-34a, which is upregulated during the DDR, modulates the expression of protein phosphatase 1γ (PP1γ) to regulate cellular tolerance to DNA damage. Multiple bio-informatic algorithms predict that miR-34a targets the PP1CCC gene encoding PP1γ protein. Ionising radiation (IR) decreases cellular expression of PP1γ in a dose-dependent manner. An miR-34a-mimic reduces cellular PP1γ protein. Conversely, an miR-34a inhibitor antagonizes IR-induced decreases in PP1γ protein expression. A wild-type (but not mutant) miR-34a seed match sequence from the 3′ untranslated region (UTR) of PP1CCC when transplanted to a luciferase reporter gene makes it responsive to an miR-34a-mimic. Thus, miR-34a upregulation during the DDR targets the 3′ UTR of PP1CCC to decrease PP1γ protein expression. PP1γ is known to antagonize DDR signaling via the ataxia-telangiectasia-mutated (ATM) kinase. Interestingly, we find that cells exposed to DNA damage become more sensitive – in an miR-34a-dependent manner – to a second challenge with damage. Increased sensitivity to the second challenge is marked by enhanced phosphorylation of ATM and p53, increased γH2AX formation, and increased cell death. Increased sensitivity can be partly recapitulated by a miR-34a-mimic, or antagonized by an miR-34a-inhibitor. Thus, our findings suggest a model in which damage-induced miR-34a induction reduces PP1γ expression and enhances ATM signaling to decrease tolerance to repeated genotoxic challenges. This mechanism has implications for tumor suppression and the response of cancers to therapeutic radiation.  相似文献   

12.
13.
14.
15.
MicroRNA-30e-5p (miR-30e-5p) is a tumor suppressor that is known to be downregulated in non-small cell lung cancer (NSCLC). However, how miR-30e-5p inhibits NSCLC tumorigenesis is not known. Ubiquitin-specific peptidase 22 (USP22) is upregulated in NSCLC and promotes tumorigenesis via a Sirt1-JAK-STAT3 pathway. In this study, we investigated whether miR-30e-5p inhibits tumor growth by targeting USP22 in NSCLC. Our results reveal that miR-30e-5p expression was correlated negatively with USP22 in NSCLC tissues. Luciferase reporter assays showed that miR-30e-5p negatively regulated USP22 expression by binding to a specific sequence in the 3?UTR. MiR-30e-5p overexpression and USP22 knockdown significantly inhibited tumor growth in vivo and induced cell cycle arrest and apoptosis in NSCLC cells in vitro. The effects of miR-30e-5p inhibition were prevented by USP22 knockdown. MiR-30e-5p inhibited SIRT1 expression and increased expression of p53 and the phosphorylated form of STAT3 (pSTAT3). Furthermore, miR-30e-5p prevented USP22-mediated regulation of SIRT1, pSTAT3, and p53 expression. Taken together, these findings suggest that miR-30e-5p suppresses NSCLC tumorigenesis by downregulatingUSP22-mediated Sirt1/JAK/STAT3 signaling. Our study has identified miR-30e-5p as a potential therapeutic target for the treatment of NSCLC.  相似文献   

16.
It has previously been shown that anthranilamide-pyrazolo[1,5-a]pyrimidine conjugates activate p53 and cause apoptosis in cervical cancer cells such as HeLa and SiHa. Here we establish the role of these conjugates in activating p53 pathway by phosphorylation at Ser15, 20 and 46 residues and downregulate key oncogenic proteins such as MYCN and Mdm2 in IMR-32 neuroblastoma cells. Compounds decreased the proliferation rate of neuroblastoma cells such as IMR-32, Neuro-2a, SK-N-SH. Compound treatment resulted in G2/M cell cycle arrest. The expression of p53 dependent genes such as p21, Bax, caspases was increased with concomitant decrease of the survival proteins as well as anti-apoptotic proteins such as Akt1, E2F1 and Bcl2. In addition the expression of important microRNAs such as miR-34a, c, miR-200b, miR-107, miR-542-5p and miR-605 were significantly increased that eventually lead to the activation of apoptotic pathway. Our data revealed that conjugates of this nature cause cell cycle arrest and apoptosis in IMR-32 cells [MYCN (+) with intact wild-type p53] by activating p53 signalling and provides a lead for the development of anti-cancer therapeutics.  相似文献   

17.
Gastric carcinoma is the fourth most common cancer worldwide, with a high rate of death and low 5-year survival rate. However, the mechanism underling gastric cancer is still not fully understood. Here in the present study, we identify the RNA-binding protein PCBP2 as an oncogenic protein in human gastric carcinoma. Our results show that PCBP2 is up-regulated in human gastric cancer tissues compared to adjacent normal tissues, and that high level of PCBP2 predicts poor overall and disease-free survival. Knockdown of PCBP2 in gastric cancer cells inhibits cell proliferation and colony formation in vitro, whereas opposing results are obtained when PCBP2 is overexpressed. Our in vivo subcutaneous xenograft results also show that PCBP2 can critically regulate gastric cancer cell growth. In addition, we find that PCBP2-depletion induces apoptosis in gastric cancer cells via up-regulating expression of pro-apoptotic proteins and down-regulating anti-apoptotic proteins. Mechanically, we identify that miR-34a as a target of PCBP2, and that miR-34a is critically essential for the function of PCBP2. In summary, PCBP2 promotes gastric carcinoma development by regulating the level of miR-34a.  相似文献   

18.
MiRNA-5195-3p (miR-5195-3p), a recently discovered and poorly studied miRNA, has been reported to suppress bladder cancer cell behavior. However, its regulatory role in non-small cell lung cancer (NSCLC) remains unclear. Here, the expression of miR-5195-3p was found to be reduced in NSCLC tissues and cells. The in vitro experiments showed that miR-5195-3p upregulation repressed cell proliferation, migration and invasion by CCK-8 and transwell assays. In addition, MYO6 was predicted and confirmed as a potential target of miR-5195-3p by Bioinformatics analysis, Luciferase reporter assay and western blot analysis. There was significantly negative correlation between miR-5195-3p and MYO6 in NSCLC tissues. Furthermore, MYO6 knockdown exhibited similar effects to those of miR-5195-3p overexpression in NSCLC cells, and restored MYO6 expression reversed the inhibitory effects of miR-5195-3p. Therefore, these results demonstrate that miR-5195-3p functions as a tumor suppressor by directly modulating MYO6 expression in NSCLC cells, and may be an innovative candidate target for NSCLC therapy.  相似文献   

19.
The CSF1 receptor (CSF1R) encoding mRNA represents a direct target of miR-34a. However, the in vivo relevance of the suppression of CSF1R by miR-34a for intestinal tumor suppression mediated by the p53/miR-34a pathway has remained unknown. Here, ApcMin/+ mice with intestinal-epithelial cell (IEC)-specific deletions of Mir34a showed increased formation of adenomas and decreased survival, whereas deletion of Csf1r decreased adenoma formation and increased survival. In adenomas deletion of Mir34a enhanced proliferation, STAT3 signaling, infiltration with fibroblasts, immune cells and microbes, and tumor stem cell abundance and decreased apoptosis. Deletion of Csf1r had the opposite effects. In addition, homeostasis of intestinal secretory and stem cells, and tumoroid formation were affected in opposite directions by deletion of Mir34a and CSF1R. Concomitant deletion of Csf1r and Mir34a neutralized the effects of the single deletions. mRNAs containing Mir34a seed-matching sites, which encode proteins related to EMT (epithelial-mesenchymal transition), stemness and Wnt signaling, were enriched after Mir34a inactivation in adenomas and derived tumoroids. Netrin-1/Ntn1 and Transgelin/Tagln were characterized as direct targets of Mir34a and Csf1r signaling. Mir34a-inactivation related expression signatures were associated with CMS4/CRISB+D, stage 4 CRCs and poor patient survival. In tumoroids the loss of Mir34a conferred resistance to 5-FU which was mediated by Csf1r. This study provides genetic evidence for a requirement of Mir34a-mediated Csf1r suppression for intestinal stem/secretory cell homeostasis and tumor suppression, and suggests that therapeutic targeting of CSF1R may be effective for the treatment of CRCs with defects in the p53/miR-34a pathway.  相似文献   

20.
MicroRNA-34a regulation of endothelial senescence   总被引:1,自引:0,他引:1  
Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelial cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号