首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mouse prostate develops from a component of the lower urinary tract (LUT) known as the urogenital sinus (UGS). This process requires androgens and signaling between mesenchyme and epithelium. Little is known about DNA methylation during prostate development, including which factors are expressed, whether their expression changes over time, and if DNA methylation contributes to androgen signaling or influences signaling between mesenchyme and epithelium. We used in situ hybridization to evaluate the spatial and temporal expression pattern of mRNAs which encode proteins responsible for establishing, maintaining or remodeling DNA methylation. These include DNA methyltrasferases, DNA deaminases, DNA glycosylases, base excision repair and mismatch repair pathway members. The mRNA expression patterns were compared between male and female LUT prior to prostatic bud formation (14.5 days post coitus (dpc)), during prostatic bud formation (17.5 dpc) and during prostatic branching morphogenesis (postnatal day (P) 5). We found dramatic changes in the patterns of these mRNAs over the course of prostate development and identified examples of sexually dimorphic mRNA expression. Future investigation into how DNA methylation patterns are established, maintained and remodeled during the course of embryonic prostatic bud formation may provide insight into prostate morphogenesis and disease.  相似文献   

3.
The mouse prostate develops from a component of the lower urinary tract (LUT) known as the urogenital sinus (UGS). This process requires androgens and signaling between mesenchyme and epithelium. Little is known about DNA methylation during prostate development, including which factors are expressed, whether their expression changes over time, and if DNA methylation contributes to androgen signaling or influences signaling between mesenchyme and epithelium. We used in situ hybridization to evaluate the spatial and temporal expression pattern of mRNAs which encode proteins responsible for establishing, maintaining or remodeling DNA methylation. These include DNA methyltrasferases, DNA deaminases, DNA glycosylases, base excision repair and mismatch repair pathway members. The mRNA expression patterns were compared between male and female LUT prior to prostatic bud formation (14.5 days post coitus (dpc)), during prostatic bud formation (17.5 dpc) and during prostatic branching morphogenesis (postnatal day (P) 5). We found dramatic changes in the patterns of these mRNAs over the course of prostate development and identified examples of sexually dimorphic mRNA expression. Future investigation into how DNA methylation patterns are established, maintained and remodeled during the course of embryonic prostatic bud formation may provide insight into prostate morphogenesis and disease.  相似文献   

4.
FGF-10 plays an essential role in the growth of the fetal prostate   总被引:4,自引:0,他引:4  
Induction and branching morphogenesis of the prostate are dependent on androgens, which act via the mesenchyme to induce prostatic epithelial development. One mechanism by which the mesenchyme may regulate the epithelium is through secreted growth factors such as FGF-10. We have examined the male reproductive tract of FGF-10(-/-) mice, and at birth, most of the male secondary sex organs were absent or atrophic, including the prostate, seminal vesicle, bulbourethral gland, and caudal ductus deferens. Rudimentary prostatic buds were occasionally observed in the prostatic anlagen, the urogenital sinus (UGS) of FGF-10(-/-) mice. FGF-10(-/-) testes produced sufficient androgens to induce prostatic development in control UGS organ cultures. Prostatic rudiments from FGF-10(-/-) mice transplanted into intact male hosts grew very little, but showed some signs of prostatic differentiation. In cultures of UGS, the FGF-10 null phenotype was partially reversed by the addition of FGF-10 and testosterone, resulting in the formation of prostatic buds. FGF-10 alone did not stimulate prostatic bud formation in control or FGF-10(-/-) UGS. Thus, FGF-10 appears to act as a growth factor which is required for development of the prostate and several other accessory sex organs.  相似文献   

5.
6.
The establishment of prostatic budding patterns occurs early in prostate development but mechanisms responsible for this event are poorly understood. We investigated the role of WNT5A in patterning prostatic buds as they emerge from the fetal mouse urogenital sinus (UGS). Wnt5a mRNA was expressed in UGS mesenchyme during budding and was focally up-regulated as buds emerged from the anterior, dorsolateral, and ventral UGS regions. We observed abnormal UGS morphology and prostatic bud patterns in Wnt5a null male fetuses, demonstrated that prostatic bud number was decreased by recombinant mouse WNT5A protein during wild type UGS morphogenesis in vitro, and showed that ventral prostate development was selectively impaired when these WNT5A-treated UGSs were grafted under under kidney capsules of immunodeficient mice and grown for 28 d. Moreover, a WNT5A inhibitory antibody, added to UGS organ culture media, rescued prostatic budding from inhibition by a ventral prostatic bud inhibitor, 2,3,8,7-tetrachlorodibenzo-p-dioxin, and restored ventral prostate morphogenesis when these tissues were grafted under immunodeficient mouse kidney capsules and grown for 28 d. These results suggest that WNT5A participates in prostatic bud patterning by restricting mouse ventral prostate development.  相似文献   

7.
8.
9.
Development and differentiation of the prostate from the fetal urogenital sinus (UGS) is dependent on androgen action via androgen receptors (AR) in the UGS mesenchyme. Estrogens are not required for prostate differentiation but do act to modulate androgen action. In mice exposure to exogenous estrogen during development results in permanent effects on adult prostate size and function, which is mediated through mesenchymal estrogen receptor (ER) alpha. For many years estrogens were thought to inhibit prostate growth because estrogenic drugs studied were administered at very high concentrations that interfered with normal prostate development. There is now extensive evidence that exposure to estrogen at very low concentrations during the early stages of prostate differentiation can stimulate fetal/neonatal prostate growth and lead to prostate disease in adulthood. Bisphenol A (BPA) is an environmental endocrine disrupting chemical that binds to both ER receptor subtypes as well as to AR. Interest in BPA has increased because of its prevalence in the environment and its detection in over 90% of people in the USA. In tissue culture of fetal mouse UGS mesenchymal cells, BPA and estradiol stimulated changes in the expression of several genes. We discuss here the potential involvement of estrogen in regulating signaling pathways affecting cellular functions relevant to steroid hormone signaling and metabolism and to inter- and intra-cellular communications that promote cell growth. The findings presented here provide additional evidence that BPA and the estrogenic drug ethinylestradiol disrupt prostate development in male mice at administered doses relevant to human exposures.  相似文献   

10.

Background  

Hedgehog (Hh) signaling from the urogenital sinus (UGS) epithelium to the surrounding mesenchyme plays a critical role in regulating ductal formation and growth during prostate development. The primary cilium, a feature of most interphase vertebrate cell types, serves as a required localization domain for Hh signaling transducing proteins.  相似文献   

11.
12.
13.
Summary In the genital tract of male and female mouse embryos cholinesterase activity is described that is independent from innervation. The enzyme activity is localized in the mesenchyme at the junction of Wolffian and Müllerian ducts with the urogenital sinus. During male development prostate buds and vesicular glands grow out into the cholinesterase-active mesenchyme. During female development the active mesenchyme participates in the downgrowth of the vaginal anlage. Ultrastructurally the cholinesterase activity is localized in the perinuclear cisterna and in smooth endoplasmic reticulum of the mesenchymal cells. The enzyme activity disappears with definitive differentiation of the tissue. The embryonic cholinesterase is a component of a primitive muscarinic system. Its relation to the morphogenetic action of testosterone and its possible general functions are discussed.  相似文献   

14.
A detailed knowledge of the developmental anatomy of the embryonic mouse urogenital tract is required to recognize mutant urogenital phenotypes in transgenic and knock-out mice. Accordingly, the purpose of this article is to review urogenital development in the mouse embryo and to give an illustrated methodological protocol for the dissection of urogenital organ rudiments at 12-13 days of gestation (E12-13) to isolate the urogenital ridge and at E16 to isolate the seminal vesicle, Müllerian duct, Wolffian duct, and prostatic rudiment, the urogenital sinus (UGS). The UGS can be cultured and, in the presence of testosterone, prostatic buds form in vitro. Because of the importance of mesenchymal-epithelial interactions in urogenital development, methods for the isolation of epithelium and mesenchyme from the embryonic urogenital sinus are also described. Urogenital sinus mesenchyme (UGM) and urogenital sinus epithelium (UGE) can be used to construct tissue recombinants that can either be grown in vitro or grafted in vivo for the study of epithelial-mesenchymal interactions in prostatic development.  相似文献   

15.
Mouse prostatic hyperplasia can be induced experimentally by the direct implantation of fetal urogenital sinus (UGS) or its mesenchyme (UGM) tissue in situ. This study characterized the time course, the requirement of sex steroids, and the optimal ages of donor and host tissues necessary to induce the maximal overgrowth of the adult mouse prostate gland in this model system. To test the potential uses of these fetal inductors as general growth-promoting substances for other adult organs, we have also tested directly the activity of fetal UGS in several non-UGS-derived adult organs. These results were compared with the growth-promoting effect achieved by fetal UGM in order to gain further insight into the relative contribution of UGS/UGM in the overall growth responses. Peak DNA synthesis in the implanted prostate occurred at three time periods-Days 4, 7-16, and 35. At Day 4, DNA synthesis may have reflected tissue repair following surgical trauma, but the DNA synthesis on Days 7-16 and 35 is attributable to growth of the chimeric (enlarged) prostate gland. Initiation and maintenance of hyperplasia required testicular androgens. Exogenous testosterone propionate (175 micrograms/day) did not induce additional prostatic overgrowth in intact, sexually mature hosts, but promoted additional overgrowth in immature and pubertal hosts. Exogenous estrogen (17 beta-estradiol dipropionate, 20 micrograms/day) inhibited fetal UGS-induced prostatic overgrowth by inhibiting the hypothalamic-pituitary-testicular axis. UGS derived from fetuses of Days 14, 16, or 18 of gestation had similar growth-inductive capability in intact adult hosts, but this capability was restricted soon after birth.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have examined the role that smooth muscle plays during prostatic organogenesis and propose that differentiation of a smooth muscle layer regulates prostatic induction by controlling mesenchymal/epithelial interactions. During development of the rat reproductive tract, an area of condensed mesenchyme involved in prostatic organogenesis is formed. This mesenchyme (the ventral mesenchymal pad, VMP) is found in both males and females, yet only males develop a prostate. We demonstrate that a layer of smooth muscle differentiates between the VMP and the urethral epithelium, and that there is a sexually dimorphic difference in the development of this layer. Serial section reconstruction showed that the layer formed at approximately embryonic day 20.5 in females, but did not form in males. In cultures of female reproductive tracts, testosterone was able to regulate the thickness of this layer resulting in a 2.4-fold reduction in thickness. We observed that prostatic buds were present in some female reproductive tracts, and determined that testosterone was able to stimulate prostatic organogenesis, depending upon the bud position relative to the smooth muscle layer. In vitro recombination experiments demonstrated that direct contact with the VMP led to the induction of very few epithelial buds, and that androgens dramatically increased bud development. Taken together, our data suggest that differentiation of a smooth muscle layer regulates signalling between mesenchyme and epithelium, and comprises part of the mechanism regulating prostatic induction.  相似文献   

17.
18.
19.
The budding of the urogenital sinus epithelium into the surrounding mesenchyme signals the onset of prostate morphogenesis. The epithelial and mesenchymal factors that regulate ductal budding and the ensuing process of ductal growth and branching are not fully known. We provide evidence that bone morphogenetic protein 4 (BMP4) is a mesenchymal factor that regulates ductal morphogenesis. The Bmp4 gene was most highly expressed in the male urogenital sinus from embryonic day 14 through birth, a period marked by formation of main prostatic ducts and initiation of ductal branching. From an initial wide distribution throughout the prostatic anlage of the urogenital sinus, Bmp4 expression became progressively restricted to the mesenchyme immediately surrounding the nascent prostatic ducts and branches. Exogenous BMP4 inhibited epithelial cell proliferation and exhibited a dose-dependent inhibition of ductal budding in urogenital sinus tissues cultured in vitro. Adult Bmp4 haploinsufficient mice exhibited an increased number of duct tips in both the ventral prostate and coagulating gland. Taken together, our data indicate that BMP4 is a urogenital sinus mesenchymal factor that restricts prostate ductal budding and branching morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号