首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liao XB  Zhou XM  Li JM  Yang JF  Tan ZP  Hu ZW  Liu W  Lu Y  Yuan LQ 《Amino acids》2008,34(4):525-530
Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine is a free β-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification, we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the β-glycerophosphate-induced osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression of the core binding factor α1 (Cbfα1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway. Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfα1 expression. These results suggested that taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway.  相似文献   

2.
3.
4.
The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP‐9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP‐9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre‐dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP‐9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP‐9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP‐9‐induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5‐Dimethoxy‐N‐(quinolin‐3‐yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP‐9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP‐9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4‐siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP‐9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention.  相似文献   

5.
Liang QH  Jiang Y  Zhu X  Cui RR  Liu GY  Liu Y  Wu SS  Liao XB  Xie H  Zhou HD  Wu XP  Yuan LQ  Liao EY 《PloS one》2012,7(4):e33126
Vascular calcification results from osteoblastic differentiation of vascular smooth muscle cells (VSMCs) and is a major risk factor for cardiovascular events. Ghrelin is a newly discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagog receptor (GHSR). Several studies have identified the protective effects of ghrelin on the cardiovascular system, however research on the effects and mechanisms of ghrelin on vascular calcification is still quite rare. In this study, we determined the effect of ghrelin on osteoblastic differentiation of VSMCs and investigated the mechanism involved using the two universally accepted calcifying models of calcifying vascular smooth muscle cells (CVSMCs) and beta-glycerophosphate (beta-GP)-induced VSMCs. Our data demonstrated that ghrelin inhibits osteoblastic differentiation and mineralization of VSMCs due to decreased alkaline phosphatase (ALP) activity, Runx2 expression, bone morphogenetic protein-2 (BMP-2) expression and calcium content. Further study demonstrated that ghrelin exerted this suppression effect via an extracellular signal-related kinase (ERK)-dependent pathway and that the suppression effect of ghrelin was time dependent and dose dependent. Furthermore, inhibition of the growth hormone secretagog receptor (GHSR), the ghrelin receptor, by siRNA significantly reversed the activation of ERK by ghrelin. In conclusion, our study suggests that ghrelin may inhibit osteoblastic differentiation of VSMCs through the GHSR/ERK pathway.  相似文献   

6.
Adipose tissue-derived stromal cells (ADSC) have previously been shown to possess stem cell properties such as transdifferentiation and self-renewal. Because future clinical applications are likely to use these adult stem cells in an autologous fashion, we wished to establish and characterize rat ADSC for pre-clinical tests. In the present study, we showed that rat ADSC expressed stem cell markers CD34 and STRO-1 at passage 1 but only STRO-1 at passage 3. These cells could also be induced to differentiate into adipocytes, smooth muscle cells, and neuron-like cells, the latter of which expressed neuronal markers S100, nestin, and NF70. Isobutylmethylxanthine (IBMX), indomethacin (INDO), and insulin were the active ingredients in a previously established neural induction medium (NIM); however, here we showed that IBMX alone was as effective as NIM in the induction of morphological changes as well as neuronal marker expression. Finally, we showed that vascular smooth muscle cells could also be induced by either NIM or IBMX to differentiate into neuron-like cells that expressed NF70.  相似文献   

7.
8.
9.
Differentiated melanocytic cells produce melanin, through several redox reactions including tyrosinase-catalyzed DOPA oxidation to DOPA quinone. We now developed a method based on DOPA oxidase in-gel detection and Sypro Ruby fluorometric normalization to investigate induction of specific DOPA oxidase isoforms in response to hydrogen peroxide-mediated stress, and to ask whether this is associated with p53-dependent adaptive responses. This report shows that hydrogen peroxide leads to comparable induction of 60 and 55 kDa DOPA oxidases in poorly pigmented B16 melanoma, in contrast to sole induction of a major 55 kDa DOPA oxidase in their highly pigmented counterparts. In the latter cells, this response also increases p53 concomitant with joint induction of p53-activated proteins like the cell-cycle inhibitor p21WAF1 and pro-apoptotic bax, with no comparable effect on expression of anti-apoptotic bcl-2. Together, these data suggest that response to hydrogen peroxide involves p53-mediated growth-restrictive signaling and unequal induction of specific DOPA oxidases in melanocytic cells with unequal basal pigmentation.  相似文献   

10.
Shan PF  Lu Y  Cui RR  Jiang Y  Yuan LQ  Liao EY 《PloS one》2011,6(3):e17938
Vascular calcification, which results from a process osteoblastic differentiation of vascular smooth muscle cells (VSMCs), is a major risk factor for cardiovascular morbidity and mortality. Apelin is a recently discovered peptide that is the endogenous ligand for the orphan G-protein-coupled receptor, APJ. Several studies have identified the protective effects of apelin on the cardiovascular system. However, the effects and mechanisms of apelin on the osteoblastic differentiation of VSMCs have not been elucidated. Using a culture of calcifying vascular smooth muscle cells (CVMSCs) as a model for the study of vascular calcification, the relationship between apelin and the osteoblastic differentiation of VSMCs and the signal pathway involved were investigated. Alkaline phosphatase (ALP) activity and osteocalcin secretion were examined in CVSMCs. The involved signal pathway was studied using the extracellular signal-regulated kinase (ERK) inhibitor, PD98059, the phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, and APJ siRNA. The results showed that apelin inhibited ALP activity, osteocalcin secretion, and the formation of mineralized nodules. APJ protein was detected in CVSMCs, and apelin activated ERK and AKT (a downstream effector of PI3-K). Suppression of APJ with siRNA abolished the apelin-induced activation of ERK and Akt. Furthermore, inhibition of APJ expression, and the activation of ERK or PI3-K, reversed the effects of apelin on ALP activity. These results showed that apelin inhibited the osteoblastic differentiation of CVSMCs through the APJ/ERK and APJ/PI3-K/AKT signaling pathway. Apelin appears to play a protective role against arterial calcification.  相似文献   

11.
Osteoprotegerin (OPG), a member of the TNF receptor superfamily, was initially found to modulate bone mass by blocking osteoclast maturation and function. Rodent models have also revealed a role for OPG as an inhibitor of vascular calcification. However, the precise mode of how OPG blocks mineralization is unclear. In this study, OPG was found in an in vitro assay to significantly inhibit calcification of vascular smooth muscle cells (VSMC) induced by high calcium/phosphate (Ca/P) treatment (p = 0.0063), although this effect was blunted at high OPG concentrations. By confocal microscopy, OPG was detected in VSMC in the Golgi, the same localization seen in osteoblasts, which express OPG in bone. Treatment of VSMC by minerals (Ca, P, or both) induced OPG mRNA expression as assessed by real-time quantitative PCR, and VSMC derived from atherosclerotic plaque material also exhibited higher OPG expression as compared to control cells (p < 0.05). Furthermore, OPG was detected by Western blotting in matrix vesicles (MV), nanoparticles that are released by VSMC with the capacity to nucleate mineral. In atherosclerotic arteries, OPG colocalized immunohistochemically with annexin VI, a calcium-dependent membrane and phospholipid binding protein found in MV. Thus, the calcification inhibitor OPG is contained in crystallizing MV and has a biphasic effect on VSMC: physiologic concentrations inhibit calcification, whereas high concentrations commonly seen in patients with vascular disease have no effect. Like other calcification inhibitors, OPG may be specifically loaded into these nanoparticles to be deposited at remote sites, where it acts to inhibit calcification.  相似文献   

12.
13.
The contractile-synthetic phenotypic modulation of vascular smooth muscle cells (VSMCs) is a key event during atherosclerosis progression. Although many studies have reported possible cytokines and growth factors implicated to this process, the critical factors affecting the VSMC phenotype remain unclear due to the lack of early de-differentiation marker identifications. In this study, we showed that nestin, an intermediate filament protein, is expressed in primary cultures of rat VSMCs representing the synthetic phenotype and its expression is diminished as these cells re-differentiate after serum deprivation. However, the regulation of nestin expression was never reported despite its common usage as an early differentiation marker. Herein, we showed that nestin expression is regulated by epidermal growth factor (EGF) via de novo RNA and protein synthesis. Furthermore, signaling analyses revealed that the EGF-induced nestin re-expression is mediated through the activation of the Ras-Raf-ERK signaling axis. This is the first report to show that nestin expression is regulated by an extracellular signaling molecule.  相似文献   

14.
Kanda Y  Watanabe Y 《Life sciences》2007,80(15):1409-1414
Cigarette smoke has been firmly established as an independent risk factor for atherosclerosis and other vascular diseases. The proliferation and migration of vascular smooth muscle cells (VSMC) induced by growth factors have been proposed to play an important role in the progression of atherosclerosis. In the present study, we investigated the effects of nicotine, which is one of the important constituents of cigarette smoke, on vascular endothelial growth factor (VEGF) release, in rat VSMC. The stimulation of cells with nicotine resulted in a time- and concentration-dependent release of VEGF. Hexamethonium, an antagonist of nicotinic acetylcholine receptor (nAChR), inhibited nicotine-induced VEGF release. We next investigated the mechanisms by which nicotine induces VEGF release in the cells. The nicotine-induced VEGF release was inhibited by treatment with U0126, a selective inhibitor of MEK, which attenuated the nicotine-induced ERK phosphorylation. Nicotine induced a transient phosphorylation of ERK. Furthermore, AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) kinase, inhibited nicotine-induced ERK phosphorylation and VEGF release. These data suggest that nicotine releases VEGF through nAChR in VSMC. Moreover, VEGF release induced by nicotine is mediated by an EGFR-ERK pathway in VSMC. VEGF may contribute to the risk of cardiovascular diseases in cigarette smokers.  相似文献   

15.
血管平滑肌细胞(vascular smooth muscle cells,VSMCs)的发育与血管壁的构建是目前相关领域中的重要学科前沿.国内外同行的工作多集中在血管发育初始阶段内皮细胞及其前体细胞在血管新生中的作用、调节因素及生物学机制.VSMCs参与血管壁早期构建,特别是VSMCs的募集与分化机制已经成为血管新生研究中的一个新领域. 本期发表的《 抑制Rac1蛋白活化阻碍胚胎发育早期血管新生 》(见696~701页)报道了韩雅玲教授及其合作者在这一领域取得的最新研究结果.Rac1是真核细胞内重要的一类信号传递分子,在细胞信号传递过程中发挥分子开关作用.他们采用胚胎干细胞(ESCs)为模型,建立稳定表达持续型Rac1和显性失活型Rac1编码序列的小鼠ESCs并制备胚胎小体,诱导分化后观察其对内皮细胞分化和迁移的影响,发现抑制Rac1可以干扰血管内皮细胞连接成血管网状结构,细胞骨架F-actin排列紊乱,细胞的迁移受到明显抑制,表明Rac1在胚胎早期血管发育过程中与内皮细胞的迁移有关[1]. 近年来,韩雅玲教授及其研究集体在VSMCs发育与血管构建、胚胎干细胞来源的拟胚体血管平滑肌发育与血管新生机制以及胚胎主动脉VSMCs起源等方面开展了研究,取得了一系列有价值的成果[2~11],可能为闭塞性和增生性血管病的发生及防治提供理论依据和候选基因.详见“相关链接”.  相似文献   

16.
A major cellular event in vascular calcification is the phenotypic transformation of vascular smooth muscle cells (VSMCs) into osteoblast‐like cells. After demonstrating that lanthanum chloride (LaCl3) suppresses hydrogen peroxide‐enhanced calcification in rat calcifying vascular cells (CVCs), here we report its effect on the osteoblastic differentiation of rat VSMCs, a process leading to the formation of CVCs. Cells were isolated from aortic media of male SD rats, and passages between three and eight were cultured in Dulbeccol's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum (FBS) and 10 mM β‐glycerophosphate (β‐GP) in the presence or absence of LaCl3. Exposure of cells to LaCl3 suppressed the β‐GP‐induced elevations in calcium deposition, alkaline phosphatase (ALP) activity, and Cbfa1/Runx2 expression, as well as the concomitant loss of SM α‐actin. Furthermore, LaCl3 activated the phosphorylation of extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK), and the blockage of either pathway with a specific inhibitor abolished the effects of LaCl3. In addition, pretreatment of the cells with pertussis toxin (PTx), an inhibitor of G protein‐mediated signaling pathway, repealed all the changes induced by LaCl3. These findings demonstrate that LaCl3 suppresses the β‐GP‐induced osteoblastic differentiation and calcification in rat VSMCs, and its effect is mediated by the activation of both ERK and JNK MAPK pathways via PTx‐sensitive G proteins. J. Cell. Biochem. 108: 1184–1191, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The differentiation of vascular smooth muscle cells (VSMCs), which are exposed to mechanical stretch in vivo, plays an important role in vascular remodeling during hypertension. Here, we demonstrated the mechanobiological roles of large conductance calcium and voltage-activated potassium (BK) channels in this process. In comparison with 5% stretch (physiological), 15% stretch (pathological) induced the de-differentiation of VSMCs, resulting in significantly decreased expressions of VSMC markers, i.e., α-actin, calponin and SM22. The activity of BK channels, assessed by patch clamp recording, was significantly increased by 15% stretch and was accompanied by an increased alternative splicing of BK channel α-subunit at the stress axis-regulated exons (STREX). Furthermore, transfection of whole BK or STREX-deleted BK plasmids revealed that STREX was important for BK channels to sense mechanical stretch. Using thapsigargin (TG) which induces endoplasmic reticulum (ER) stress, and xbp1-targeted siRNA transfection which blocks ER stress, the results revealed that ER stress was contribute to stretch-induced alternative splicing of STREX. Our results suggested that during hypertension, pathological stretch may induce the ER stress in VSMCs, which affects the alternative splicing and activity of BK channels, and subsequently modulates VSMC differentiation.  相似文献   

18.
19.
AMP-activated protein kinase (AMPK) is a cellular energy sensor involved in multiple cell signaling pathways that has become an attractive therapeutic target for vascular diseases. It is not clear whether rottlerin, an inhibitor of protein kinase Cδ, activates AMPK in vascular cells and tissues. In the present study, we have examined the effect of rottlerin on AMPK in vascular smooth muscle cells (VSMCs) and isolated rabbit aorta. Rottlerin reduced cellular ATP and activated AMPK in VSMCs and rabbit aorta; however, inhibition of PKCδ by three different methods did not activate AMPK. Both VSMCs and rabbit aorta expressed the upstream AMPK kinase LKB1 protein, and rottlerin-induced AMPK activation was decreased in VSMCs by overexpression of dominant-negative LKB1, suggesting that LKB1 is involved in the upstream regulation of AMPK stimulated by rottlerin. These data suggest for the first time that LKB1 mediates rottlerin-induced activation of AMPK in vascular cells and tissues.  相似文献   

20.
Apelin is an adipokine that has a critical role in the development of atherosclerosis, which may offer potential for therapy. Because migration of vascular smooth muscle cells (VSMCs) is a key event in the development of atherosclerosis, understanding its effect on the atherosclerotic vasculature is needed. Here we investigated the effect of apelin on VSMC migration and the possible signaling mechanism. In cultured rat VSMCs, apelin dose- and time-dependently promoted VSMC migration. Apelin increased the phosphorylation of Akt, whereas LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), and an Akt1/2 kinase inhibitor blocked the apelin-induced VSMC migration. Apelin dose-dependently induced phosphorylation of Forkhead box O3a (FoxO3a) and promoted its translocation from the nucleus to cytoplasm, which were blocked by LY294002 and Akt1/2 kinase inhibitor. Furthermore, apelin increased matrix metalloproteinase 2 (MMP-2) expression and gelatinolytic activity. Overexpression of a constitutively active, phosphorylation-resistant mutant, TM-FoxO3a, in VSMCs abrogated the effect of apelin on MMP-2 expression and VSMC migration. ARP101, an inhibitor of MMP-2, suppressed apelin-induced VSMC migration. Moreover, the levels of apelin, phosphorylated Akt, FoxO3a, and MMP-2 were higher in human carotid-artery atherosclerotic plaque than in adjacent normal vessels. We demonstrate that PI3K/Akt/FoxO3a signaling may be involved in apelin inducing VSMC migration. Phosphorylation of FoxO3a plays a central role in mediating the apelin-induced MMP-2 activation and VSMC migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号