首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lymph hearts are pulsatile organs, present in lower vertebrates, that function to propel lymph into the venous system. Although they are absent in mammals, the initial veno-lymphatic plexus that forms during mammalian jugular lymph sac development has been described as the vestigial homologue of the nascent stage of ancestral anterior lymph hearts. Despite the widespread presence of lymph hearts among vertebrate species and their unique function, extremely little is known about lymph heart development. We show that Xenopus anterior lymph heart muscle expresses skeletal muscle markers such as myoD and 12/101, rather than cardiac markers. The onset of lymph heart myoblast induction can be visualized by engrailed-1 (en1) staining in anterior trunk somites, which is dependent on Hedgehog (Hh) signaling. In the absence of Hh signaling and upon en1 knockdown, lymph heart muscle fails to develop, despite the normal development of the lymphatic endothelium of the lymph heart, and embryos develop edema. These results suggest a mechanism for the evolutionary transition from anterior lymph hearts to jugular lymph sacs in mammals.  相似文献   

2.
3.
The cardiac conduction system is a complex network of cells that together orchestrate the rhythmic and coordinated depolarization of the heart. The molecular mechanisms regulating the specification and patterning of cells that form this conductive network are largely unknown. Studies in avian models have suggested that components of the cardiac conduction system arise from progressive recruitment of cardiomyogenic progenitors, potentially influenced by inductive effects from the neighboring coronary vasculature. However, relatively little is known about the process of conduction system development in mammalian species, especially in the mouse, where even the histological identification of the conductive network remains problematic. We have identified a line of transgenic mice where lacZ reporter gene expression delineates the developing and mature murine cardiac conduction system, extending proximally from the sinoatrial node to the distal Purkinje fibers. Optical mapping of cardiac electrical activity using a voltage-sensitive dye confirms that cells identified by the lacZ reporter gene are indeed components of the specialized conduction system. Analysis of lacZ expression during sequential stages of cardiogenesis provides a detailed view of the maturation of the conductive network and demonstrates that patterning occurs surprisingly early in embryogenesis. Moreover, optical mapping studies of embryonic hearts demonstrate that a murine His-Purkinje system is functioning well before septation has completed. Thus, these studies describe a novel marker of the murine cardiac conduction system that identifies this specialized network of cells throughout cardiac development. Analysis of lacZ expression and optical mapping data highlight important differences between murine and avian conduction system development. Finally, this line of transgenic mice provides a novel tool for exploring the molecular circuitry controlling mammalian conduction system development and should be invaluable in studies of developmental mutants with potential structural or functional conduction system defects.  相似文献   

4.
Eye development is a complex process that involves the formation of the retina and the lens, collectively called the eyeball, as well as the formation of auxiliary eye structures such as the eyelid, lacrimal gland, cornea and conjunctiva. The developmental requirements for the formation of each individual structure are only partially understood. We have shown previously that the homeobox-containing gene Rx is a key component in eye formation, as retinal structures do not develop and retina-specific gene expression is not observed in Rx-deficient mice. In addition, Rx−/− embryos do not develop any lens structure, despite the fact that Rx is not expressed in the lens. This demonstrates that during normal mammalian development, retina-specific gene expression is necessary for lens formation. In this paper we show that lens formation can be restored in Rx-deficient embryos experimentally, by the elimination of β-catenin expression in the head surface ectoderm. This suggests that β-catenin is involved in lens specification either through Wnt signaling or through its function in cell adhesion. In contrast to lens formation, we demonstrate that the development of auxiliary eye structures does not depend on retina-specific gene expression or retinal morphogenesis. These results point to the existence of two separate developmental processes involved in the formation of the eye and its associated structures. One involved in the formation of the eyeball and the second involved in the formation of the auxiliary eye structures.  相似文献   

5.
Purkinje fibers of the cardiac conduction system differentiate from heart muscle cells during embryogenesis. In the avian heart, Purkinje fiber differentiation takes place along the endocardium and coronary arteries. To date, only the vascular cytokine endothelin (ET) has been demonstrated to induce embryonic cardiomyocytes to differentiate into Purkinje fibers. This ET-induced Purkinje fiber differentiation is mediated by binding of ET to its transmembrane receptors that are expressed by myocytes. Expression of ET converting enzyme 1, which produces a biologically active ET ligand, begins in cardiac endothelia, both arterial and endocardial, at initiation of conduction cell differentiation and continues throughout heart development. Yet, the ability of cardiomyocytes to convert their phenotype in response to ET declines as embryos mature. Therefore, the loss of responsiveness to the inductive signal appears not to be associated with the level of ET ligand in the heart. This study examines the role of ET receptors in this age-dependent loss of inductive responsiveness and the expression profiles of three different types of ET receptors, ET(A), ET(B) and ET(B2), in the embryonic chick heart. Whole-mount in situ hybridization analyses revealed that ET(A) was ubiquitously expressed in both ventricular and atrial myocardium during heart development, while ET(B) was predominantly expressed in the atrium and the left ventricle. ET(B2) expression was detected in valve leaflets but not in the myocardium. RNase protection assays showed that ventricular expression of ET(A) and ET(B) increased until Purkinje fiber differentiation began. Importantly, the levels of both receptor isotypes decreased after this time. Retrovirus-mediated overexpression of ET(A) in ventricular myocytes in which endogenous ET receptors had been downregulated, enhanced their responsiveness to ET, allowing them to differentiate into conduction cells. These results suggest that the developmentally regulated expression of ET receptors plays a crucial role in determining the competency of ventricular myocytes to respond to inductive ET signaling in the chick embryo.  相似文献   

6.
The rhythmic heart beat is coordinated by electrical impulses transmitted from Purkinje fibers of the cardiac conduction system. During embryogenesis, the impulse-conducting cells differentiate from cardiac myocytes in direct association with the developing endocardium and coronary arteries, but not with the venous system. This conversion of myocytes into Purkinje fibers requires a paracrine interaction with blood vessels in vivo, and can be induced in vitro by exposing embryonic myocytes to endothelin-1 (ET-1), an endothelial cell-associated paracrine factor. These results suggest that an endothelial cell-derived signal is capable of inducing juxtaposed myocytes to differentiate into Purkinje fibers. It remains unexplained how Purkinje fiber recruitment is restricted to subendocardial and periarterial sites but not those juxtaposed to veins. Here we show that while the ET-receptor is expressed throughout the embryonic myocardium, introduction of the ET-1 precursor (preproET-1) in the embryonic myocardium is not sufficient to induce myocytes to differentiate into conducting cells. ET converting enzyme-1 (ECE-1), however, is expressed preferentially in endothelial cells of the endocardium and coronary arteries where Purkinje fiber recruitment takes place. Retroviral-mediated coexpression of both preproET-1 and ECE-1 in the embryonic myocardium induces myocytes to express Purkinje fiber markers ectopically and precociously. These results suggest that expression of ECE-1 plays a key role in defining an active site of ET signaling in the heart, thereby determining the timing and location of Purkinje fiber differentiation within the embryonic myocardium.  相似文献   

7.
The heart is the first organ required to function during embryonic development and is absolutely necessary for embryo survival. Cardiac activity is dependent on both the sinoatrial node (SAN), which is the pacemaker of heart''s electrical activity, and the cardiac conduction system which transduces the electrical signal though the heart tissue, leading to heart muscle contractions. Defects in the development of cardiac electrical function may lead to severe heart disorders. The Erbb2 (Epidermal Growth Factor Receptor 2) gene encodes a member of the EGF receptor family of receptor tyrosine kinases. The Erbb2 receptor lacks ligand-binding activity but forms heterodimers with other EGF receptors, stabilising their ligand binding and enhancing kinase-mediated activation of downstream signalling pathways. Erbb2 is absolutely necessary in normal embryonic development and homozygous mouse knock-out Erbb2 embryos die at embryonic day (E)10.5 due to severe cardiac defects. We have isolated a mouse line, l11Jus8, from a random chemical mutagenesis screen, which carries a hypomorphic missense mutation in the Erbb2 gene. Homozygous mutant embryos exhibit embryonic lethality by E12.5-13. The l11Jus8 mutants display cardiac haemorrhage and a failure of atrial function due to defects in atrial electrical signal propagation, leading to an atrial-specific conduction block, which does not affect ventricular conduction. The l11Jus8 mutant phenotype is distinct from those reported for Erbb2 knockout mouse mutants. Thus, the l11Jus8 mouse reveals a novel function of Erbb2 during atrial conduction system development, which when disrupted causes death at mid-gestation.  相似文献   

8.
Impulse-conducting Purkinje fibers differentiate from myocytes during embryogenesis. The conversion of contractile myocytes into conduction cells is induced by the stretch/pressure-induced factor, endothelin (ET). Active ET is produced via proteolytic processing from its precursor by ET-converting enzyme 1 (ECE1) and triggers signaling by binding to its receptors. In the embryonic chick heart, ET receptors are expressed by all myocytes, but ECE1 is predominantly expressed in endothelial cells of coronary arteries and endocardium along which Purkinje fiber recruitment from myocytes takes place. Furthermore, co-expression of exogenous ECE1 and ET-precursor in the embryonic heart is sufficient to ectopically convert cardiomyocytes into Purkinje fibers. Thus, localized expression of ECE1 defines the site of Purkinje fiber recruitment in embryonic myocardium. However, it is not known how ECE1 expression is regulated in the embryonic heart. The unique expression pattern of ECE1 in the embryonic heart suggests that blood flow-induced stress/stretch may play a role in patterning ECE1 expression and subsequent induction of Purkinje fiber differentiation. We show that gadolinium, an antagonist for stretch-activated cation channels, downregulates the expression of ECE1 and a conduction cell marker, Cx40, in ventricular chambers, concurrently with delayed maturation of a ventricular conduction pathway. Conversely, pressure-overload in the ventricle by conotruncal banding results in a significant expansion of endocardial ECE1 expression and Cx40-positive putative Purkinje fibers. Coincident with this, an excitation pattern typical of the mature heart is precociously established. These in vivo data suggest that biomechanical forces acting on, and created by, the cardiovascular system during embryogenesis play a crucial role in Purkinje fiber induction and patterning.  相似文献   

9.
NDRG4 is a novel member of the NDRG family (N-myc downstream-regulated gene). The roles of NDRG4 in development have not previously been evaluated. We show that, during zebrafish embryonic development, ndrg4 is expressed exclusively in the embryonic heart, the central nervous system (CNS) and the sensory system. Ndrg4 knockdown in zebrafish embryos causes a marked reduction in proliferative myocytes and results in hypoplastic hearts. This growth defect is associated with cardiac phenotypes in morphogenesis and function, including abnormal heart looping, inefficient circulation and weak contractility. We reveal that ndrg4 is required for restricting the expression of versican and bmp4 to the developing atrioventricular canal. This constellation of ndrg4 cardiac defects phenocopies those seen in mutant hearts of heartstrings (hst), the tbx5 loss-of-function mutants in zebrafish. We further show that ndrg4 expression is significantly decreased in hearts with reduced tbx5 activities. Conversely, increased expression of tbx5 that is due to tbx20 knockdown leads to an increase in ndrg4 expression. Together, our studies reveal an essential role of ndrg4 in regulating proliferation and growth of cardiomyocytes, suggesting that ndrg4 may function downstream of tbx5 during heart development and growth.  相似文献   

10.
11.
Heart formation is a complex morphogenetic process, and perturbations in cardiac morphogenesis lead to congenital heart disease. NKX2-5 is a key causative gene associated with cardiac birth defects, presumably because of its essential roles during the early steps of cardiogenesis. Previous studies in model organisms implicate NKX2-5 homologs in numerous processes, including cardiac progenitor specification, progenitor proliferation, and chamber morphogenesis. By inhibiting function of the zebrafish NKX2-5 homologs, nkx2.5 and nkx2.7, we show that nkx genes are essential to establish the original dimensions of the linear heart tube. The nkx-deficient heart tube fails to elongate normally: its ventricular portion is atypically short and wide, and its atrial portion is disorganized and sprawling. This atrial phenotype is associated with a surplus of atrial cardiomyocytes, whereas ventricular cell number is normal at this stage. However, ventricular cell number is decreased in nkx-deficient embryos later in development, when cardiac chambers are emerging. Thus, we conclude that nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. Our data suggest that morphogenetic errors could originate during early stages of heart tube assembly in patients with NKX2-5 mutations.  相似文献   

12.
The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr -/- and in utero TCDD-exposed Ahr +/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr -/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.  相似文献   

13.
In mice, homozygous deletion of the cardiac sodium channel Scn5a results in defects in cardiac morphology and embryonic death before robust sodium current can be detected. In zebrafish, morpholino knockdown of cardiac sodium channel orthologs scn5Laa and scn5Lab perturbs specification of precardiac mesoderm and inhibits growth of the embryonic heart. It is not known which developmental processes are perturbed by sodium channel knockdown and whether reduced cell number is from impaired migration of cardiac progenitors into the heart, impaired myocyte proliferation, or both. We found that embryos deficient in scn5Lab displayed defects in primary cardiogenesis specific to loss of nkx2.5, but not nkx2.7. We generated kaede reporter fish and demonstrated that embryos treated with anti‐scn5Lab morpholino showed normal secondary differentiation of cardiomyocytes at the arterial pole between 30 and 48 h post‐fertilization. However, while proliferating myocytes were readily detected at 48 hpf in wild type embryos, there were no BrdU‐positive cardiomyocytes in embryos subjected to anti‐scn5Lab treatment. Proliferating myocytes were present in embryos injected with anti‐tnnt2 morpholino to phenocopy the silent heart mutation, and absent in embryos injected with anti‐tnnt2 and anti‐scn5Lab morpholinos, indicating cardiac contraction is not required for the loss of proliferation. These data demonstrate that the role of scn5Lab in later heart growth does not involve contribution of the secondary heart field, but rather proliferation of cardiomyocytes, and appears unrelated to the role of the channel in cardiac electrogenesis. genesis 51:562–574. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
The vascular system is the first organ to form in the developing mammalian embryo. The Notch signaling pathway is an evolutionarily conserved signaling mechanism essential for proper embryonic development in almost all vertebrate organs. The analysis of targeted mouse mutants has demonstrated essential roles of the Notch signaling pathway in embryonic vascular development. However, Notch signaling-deficient mice have so far not been examined in detail in the head region. The bHLH genes Hes1 and Hes5 are essential effectors for Notch signaling, which regulate the maintenance of progenitor cells and the timing of their differentiation in various tissues and organs. Here, we report that endothelial-specific Hes1 and Hes5 mutant embryos exhibited defective vascular remodeling in the brain. In addition, arterial identity of endothelial cells was partially lost in the brain of these mutant mice. These data suggest that Hes1 and Hes5 regulate vascular remodeling and arterial fate specification of endothelial cells in the development of the brain. Hes1 and Hes5 represent critical transducers of Notch signals in brain vascular development.  相似文献   

15.
Glypican-3 (Gpc3) is a heparan sulfate proteoglycan (HSPG) expressed widely during vertebrate development. Loss-of-function mutations cause Simpson-Golabi-Behmel syndrome (SGBS), a rare and complex congenital overgrowth syndrome with a number of associated developmental abnormalities including congenital heart disease. We found that Gpc3-deficient mice display a high incidence of congenital cardiac malformations like ventricular septal defects, common atrioventricular canal and double outlet right ventricle. In addition we observed coronary artery fistulas, which have not been previously reported in SGBS. Coronary artery fistulas are noteworthy because little is known about the molecular basis of this abnormality. Formation of the coronary vascular plexus in Gpc3-deficient embryos was delayed compared to wild-type, and consistent with GPC3 functioning as a co-receptor for fibroblast growth factor-9 (FGF9), we found a reduction in Sonic Hedgehog (Shh) mRNA expression and signaling in embryonic mutant hearts. Interestingly, we found an asymmetric reduction in SHH signaling in cardiac myocytes, as compared with perivascular cells, resulting in excessive coronary artery formation in the Gpc3-deficient animals. We hypothesize that the excessive development of coronary arteries over veins enables the formation of coronary artery fistulas. This work has broad significance to understanding the genetic basis of coronary development and potentially to molecular mechanisms relevant to revascularization following ischemic injury to the heart.  相似文献   

16.
17.
18.
Numerous studies have revealed that Rap1 (Ras-proximate-1 or Ras-related protein 1), a small GTPase protein, plays a crucial role in mediating cAMP signaling in isolated cardiac tissues and cell lines. However, the involvement of Rap1 in the cardiac development in vivo is largely unknown. By injecting anti-sense morpholino oligonucleotides to knock down Rap1a and Rap1b in zebrafish embryos, and in combination with time-lapsed imaging, in situ hybridization, immunohistochemistry and transmission electron microscope techniques, we seek to understand the role of Rap1 in cardiac development and functions. At an optimized low dose of mixed rap1a and rap1b morpholino oligonucleotides, the heart developed essentially normally until cardiac contraction occurred. Morphant hearts showed the myocardium defect phenotypes, most likely due to disrupted myofibril assembly and alignment. In vivo heart electrocardiography revealed prolonged P-R interval and QRS duration, consistent with an adherens junction defect and reduced Connexons in cardiac myocytes of morphants. We conclude that a proper level of Rap1 is crucial for heart morphogenesis and function, and suggest that Rap1 and/or their downstream factor genes are potential candidates for genetic screening for human heart diseases.  相似文献   

19.
The endothermic state of mammals and birds requires high heart rates to accommodate the high rates of oxygen consumption. These high heart rates are driven by very similar conduction systems consisting of an atrioventricular node that slows the electrical impulse and a His-Purkinje system that efficiently activates the ventricular chambers. While ectothermic vertebrates have similar contraction patterns, they do not possess anatomical evidence for a conduction system. This lack amongst extant ectotherms is surprising because mammals and birds evolved independently from reptile-like ancestors. Using conserved genetic markers, we found that the conduction system design of lizard (Anolis carolinensis and A. sagrei), frog (Xenopus laevis) and zebrafish (Danio rerio) adults is strikingly similar to that of embryos of mammals (mouse Mus musculus, and man) and chicken (Gallus gallus). Thus, in ectothermic adults, the slow conducting atrioventricular canal muscle is present, no fibrous insulating plane is formed, and the spongy ventricle serves the dual purpose of conduction and contraction. Optical mapping showed base-to-apex activation of the ventricles of the ectothermic animals, similar to the activation pattern of mammalian and avian embryonic ventricles and to the His-Purkinje systems of the formed hearts. Mammalian and avian ventricles uniquely develop thick compact walls and septum and, hence, form a discrete ventricular conduction system from the embryonic spongy ventricle. Our study uncovers the evolutionary building plan of heart and indicates that the building blocks of the conduction system of adult ectothermic vertebrates and embryos of endotherms are similar.  相似文献   

20.
Unlike its mammalian counterpart, the adult zebrafish heart is able to fully regenerate after severe injury. One of the most important events during the regeneration process is cardiomyocyte proliferation, which results in the replacement of lost myocardium. Growth factors that induce cardiomyocyte proliferation during zebrafish heart regeneration remain to be identified. Signaling pathways important for heart development might be reutilized during heart regeneration. IGF2 was recently shown to be important for cardiomyocyte proliferation and heart growth during mid-gestation heart development in mice, although its role in heart regeneration is unknown. We found that expression of igf2b was upregulated during zebrafish heart regeneration. Following resection of the ventricle apex, igf2b expression was detected in the wound, endocardium and epicardium at a time that coincides with cardiomyocyte proliferation. Transgenic zebrafish embryos expressing a dominant negative form of Igf1 receptor (dn-Igf1r) had fewer cardiomyocytes and impaired heart development, as did embryos treated with an Igf1r inhibitor. Moreover, inhibition of Igf1r signaling blocked cardiomyocyte proliferation during heart development and regeneration. We found that Igf signaling is required for a subpopulation of cardiomyocytes marked by gata4:EGFP to contribute to the regenerating area. Our findings suggest that Igf signaling is important for heart development and myocardial regeneration in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号