首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine how dexamethasone (DEX) regulates the expression and activity of αvβ3 integrin. FACS analysis showed that DEX treatment induced expression of an activated αvβ3 integrin. Its expression remained high as long as DEX was present and continued following DEX removal. FACS analysis showed that the upregulation of αvβ3 integrin was the result of an increase in the expression of the β3 integrin subunit. By real time qPCR, DEX treatment induced a 6.2-fold increase (p < 0.04) in β3 integrin mRNA by day 2 compared to control and remained elevated for 6 days of treatment and then an additional 10 days once the DEX was removed. The increase in β3 integrin mRNA levels required only 1 day of DEX treatment to increase levels for 4 days in the absence of DEX. In contrast, DEX did not alter β1 integrin mRNA or protein levels. The DEX-induced upregulation of β3 integrin mRNA was partly due to an increase in its half-life to 60.7 h from 22.5 h in control cultures (p < 0.05) and could be inhibited by RU486 and cycloheximide, suggesting that DEX-induced de novo protein synthesis of an activation factor was needed. The calcineurin inhibitors cyclosporin A (CsA) and FK506 inhibited the DEX induced increase in β3 integrin mRNA. In summary, the DEX-induced increase in β3 integrin is a secondary glucocorticoid response that results in prolonged expression of αvβ3 integrin and the upregulation of the β3 integrin subunit through the calcineurin/NFAT pathway.  相似文献   

2.
We characterized β1 integrin subunit expression on three different cultures of benign human nevomelanocytes (NMC) and on four different cell cultures of human dysplastic nevus (DN) cells by flow cytometry analysis and examined their role in mediating cell spreading and migration on collagen type IV (CN IV) and laminin (LN) coated substrates by using a quantitative video image analysis system. The seven human NMC and DNC cultures expressed heterogeneous levels of β1, α2, α3 and α6 integrin subunits. Image analysis showed that a significant increase (P<0.001) in cell spreading and migration of the DN cells was induced on increasing coating concentrations of CN IV and LN. However, the NMC did not show an increase in cell spreading or migration on these substrates when compared to the substrates coated with denatured BSA only. The CN IV-induced cell spreading of the DN cells was significantly inhibited by anti-β1 mAb (AIIB2), anti-α2 mAb (P1E6), or anti-α3 mAb (P1B5), but not by mAb against α6 integrin subunit (GoH3). The DN cell spreading on LN was not significantly inhibited by these mAbs. In contrast, the migration of the DN on CN IV and LN was significantly inhibited by anti-β1 mAb, anti-α2 mAb, anti-α3 mAb and anti-α6 mAb. These data suggest that the α2 and α3 subunit are important for cell spreading of the DN on CN IV, although they are less important in cell spreading on the extracellular matrix component LN. The α2, α3 and α6 integrin subunits are important for the migration of DN cells on both CN IV and LN.  相似文献   

3.
Human leukocyte endothelial adhesion and transmigration occur in the early stage of the pathogenesis of atherosclerosis. Vascular endothelial cells are targeted by pro-inflammatory cytokines modulating many gene proteins responsible for cell adhesion, thrombosis and inflammatory responses. This study examined the potential of compound K to inhibit the pro-inflammatory cytokine TNF-α induction of monocyte adhesion onto TNF-α-activated human umbilical vein endothelial cells (HUVEC). HUVEC were cultured with 10 ng/ml TNF-α with individual ginsenosides of Rb1, Rc, Re, Rh1 and compound K (CK). Ginsenosides at doses of ?50 μM did not show any cytotoxicity. TNF-α induced THP-1 monocyte adhesion to HUVEC, and such induction was attenuated by Rh1 and CK. Consistently, CK suppressed TNF-α-induced expression of HUVEC adhesion molecules of VCAM-1, ICAM-1 and E-selectin, and also Rh1 showed a substantial inhibition. Rh1 and CK dampened induction of counter-receptors, α4/β1 integrin VLA-4 and αL/β2 integrin LFA-1 in TNF-α-treated THP-1 cells. Additionally, CK diminished THP-1 secretion of MMP-9 required during transmigration, inhibiting transendothelial migration of THP-1 cells. CK blunted TNF-α-promoted IL-8 secretion of HUVEC and CXCR1 expression of THP-1 monocytes. Furthermore, TNF-α-activated endothelial IκB phosphorylation and NF-κB nuclear translocation were disturbed by CK, and TNF-α induction of α4/β1 integrin was abrogated by the NF-κB inhibitor SN50. These results demonstrate that CK exerts anti-atherogenic activity with blocking leukocyte endothelial interaction and transmigration through negatively mediating NF-κB signaling.  相似文献   

4.
Background and aimsCigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH).MethodshHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH).ResultshHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers.ConclusionNicotine at levels in smokers’ blood is pro-fibrogenic, through actions on hHSCs expressed nAChRs. Therefore, CS, via its nicotine content, may worsen liver fibrosis. Moreover, nicotinic receptor antagonists may have utility as novel anti-fibrotic agents.  相似文献   

5.
6.
Background information. Previous studies have reported that cross‐talk between integrins may be an important regulator of integrin—ligand binding and subsequent signalling events that control a variety of cell functions in many tissues. We previously demonstrated that αvβ5/β6 integrin represses α2β1‐dependent cell migration. The αv subunits undergo an endoproteolytic cleavage by protein convertases, whose role in tumoral invasion has remained controversial. Results. Inhibition of convertases by the convertase inhibitor α1‐PDX (α1‐antitrypsin Portland variant), leading to the cell‐surface expression of an uncleaved form of the αv integrin, stimulated cell migration toward type I collagen. Under convertase inhibition, α2β1 engagement led to enhanced phosphorylation of both FAK (focal adhesion kinase) and MAPK (mitogen‐activated protein kinase). This outside‐in signalling stimulation was associated with increased levels of activated β1 integrin located in larger than usual focal‐adhesion structures and a cell migration that was independent of the PI3K (phosphoinositide 3‐kinase)/Akt (also called protein kinase B) pathway. Conclusions. The increase in cell migration observed upon convertases inhibition appears to be due to the up‐regulation of β1 integrins and to their location in larger focal‐adhesion structures. The endoproteolytic cleavage of αv subunits is necessary for αvβ5/β6 integrin to control α2β1 function and could thus play an essential role in colon cancer cell migration.  相似文献   

7.
8.
Pulsed electromagnetic fields (PEMF) could enhance the cytocidal effects of chemotherapeutic drugs on malignant tumor cell lines, but metastasis effects of PEMF on tumor cells have not been investigated. We investigated the effects of PEMF exposure on the expression levels of some metastasis-related molecules, including integrin α subunits (α1, α2, α3, α4, α5, α6, αv), integrin β subunits (β1, β2, β3, β4), CD44, and matrix metalloproteinase-2/9 (MMP-2/9) in four human osteosarcoma cell lines (HOS, MG-63, SAOS-2, NY) and two mouse osteosarcoma cell lines (DOS, LM8) by using FACScan analysis, gelatin zymography, and Western blot analysis. Our results indicate that PEMF exposure has no effect on the expression of some molecules that are associated with tumor cell invasion and metastasis, and therefore suggest that PEMF exposure may be safely applied to chemotherapy for osteosarcoma.  相似文献   

9.
Integrins, transmembrane glycoprotein receptors, play vital roles in pathological angiogenesis, but their precise regulatory functions are not completely understood and remain controversial. This study aims to assess the regulatory functions of individual beta subunits of endothelial integrins in angiogenic responses induced by vascular endothelial growth factor (VEGF). Inhibition of expression of β1, β3, or β5 integrins in endothelial cells resulted in down regulation of EC adhesion and migration on the primary ligand for the corresponding integrin receptor, while no effects on the recognition of other ligands were detected. Although inhibition of expression of each subunit substantially affected capillary growth stimulated by VEGF, the loss of β3 integrin was the most inhibitory. EC stimulation by VEGF induced formation of the high affinity (activated) state of αVβ3 in a monolayer and activated αVβ3 was co-localized with VEGF receptor-2 (VEGFR-2). Inhibition of expression of β1, β3, or β5 did not affect expression levels of VEGFR-2 in EC. However, inhibition of β3, but not β1 or β5, resulted in substantial inhibition of VEGFR-2 phosphorylation stimulated by VEGF. Exogenous stimulation of αVβ3 integrin with activating antibodies augmented VEGF-dependent phosphorylation of VEGFR-2, whereas integrin blockade suppressed this response. Most importantly, activated αVβ3 was detected on endothelial cells of tumor vasculature. Activation of αVβ3 was substantially increased in highly-vascularized tumors as compared to normal tissues. Moreover, activated αVβ3 was co-localized with VEGFR-2 on endothelial cells of proliferating blood vessels. Together, these results show the unique role of αVβ3 integrin in cross-talk with VEGFR-2 in the context of pathological angiogenesis.  相似文献   

10.
It has become apparent that extracellular matrix components and their cellular receptors, the integrins, are important regulators of glomerular development and function. In this rapidly evolving field we studied the production of extracellular matrix components and integrins by rat glomerular visceral epithelial and mesangial cells, using molecular probes and antibodies that have recently become available. Special attention was paid to laminin isoforms and to splice variants of the integrin subunits α3 and α6. Results were compared to the in vivo expression in human fetal, newborn and adult kidneys.

The mesangial cells were found to produce laminin-1, nidogen and two as yet unidentified laminin isoforms with putative α chains of about 395 (m) and of 375 kDa (cry), tentatively described before as bovine kidney laminin. Furthermore, they expressed the integrins α1β1, α2β, α3Aβ1, α5β1, αvβ3, αvβ5, and small amounts of α6Aβ1 and α6Bβ1. The glomerular visceral epithelial cells produced the two new laminin isoforms mentioned above, laminin-5, but no laminin-1 or nidogen. The integrins α2β1, αAβ1, α6Aβ4, αBβ4 and the integrin subunit av were found to be expressed.

We show that during nephrogenesis, the laminin α1 chain disappears and is replaced by another a chain, possibly one of the two as yet unidentified α chains mentioned above. The laminin β1 chain is replaced by the β2 chain somewhat later in glomerular development. In general, the integrins found to be expressed in glomeruli of adult kidney were consistent with those found in cultured glomerular visceral epithelial and mesangial cells. No splice variant switch of the integrin α3 or α6 subunits could be demonstrated during nephrogenesis.

Our results suggest an important role for the mesangial cell in providing nidogen as a crucial component of the supramolecular stucture of the glomerular basement membrane. Furthermore our results indicate that laminin αxβ2γ1 and αβ2γ1 isoforms are important in the glomerulus of adult kidney and that the integrin α3Aβ1 is the main integrin receptor for laminin isoforms on glomerular visceral epithelial and mesangial cells, both in vitro and in vivo.  相似文献   

11.
Recently our group used oligodendrocyte progenitor cells (OPCs) as appropriate model cells to pinpoint the mechanism of the progress of neurodegenerative disorders. In the present study, we focused on the therapeutic role of osteopontin (OPN), a secreted glycosylated phosphoprotein, involved in a number of physiological events including bone formation and remodeling, immune responses, and tumor progression. Protective role of OPN, as a negative regulator of tumorigenesis, has already been clarified. Human embryonic stem cell-derived OPCs were pretreated with OPN before induction of apoptosis by H2O2. Data indicated that OPN prohibited cell death and enhanced OPC viability. This effect is achieved through reduction of apoptosis and induction of anti-apoptosis markers. In addition OPN induces expression of several integrin subunits, responsible for OPN interaction. Notably, our findings showed that expression of αV β1/β3/β5 and β8 integrins increased in response to OPN, while treatment with H2O2 down-regulated αV β1/β5 and β8 integrins expression significantly. In conclusion, OPN may act via αV integrin signaling and trigger suppression of P53-dependent apoptotic cascades. Therefore OPN therapy may be considered as a feasible process to prevent progress of neurodegenerative diseases in human.  相似文献   

12.
13.
Dermal fibroblasts are essential for the repair of cutaneous wounds. Fibroblasts presumably use cell surface receptors of the integrin family during migration into a wound from the adjacent uninjured tissue and for the subsequent matrix repairs. We have investigated the possible roles of platelet-derived growth factor and inflammatory cytokines in the regulation of integrin expression on wound fibroblasts using a porcine cutaneous wound model and cultured human cells. Tissue specimens collected from 4-day pig wounds were stained with antibodies specific for the α1 and α5 integrin subunits. Staining for α1 was markedly decreased on fibroblasts adjacent to the wound and in the granulation tissue, while staining for α5 was clearly enhanced in both locations. Normal adult human dermal fibroblasts in culture express the integrins α1β1, a collagen receptor, and α5β1, a fibronectin receptor. Quantitative flow cytometry was used to measure cell surface integrin expression after treatment with platelet-derived growth factor (PDGF)-AA, PDGF-AB, or PDGF-BB. Each isoform of PDGF produced a significant decrease in the level of α1 present on the cell surface and an increase in the level of α5. Furthermore, PDGF-BB produced a corresponding decrease in α1 mRNA and an increase in α5 mRNA. In contrast, treatment with three inflammatory cytokines, IL-1β, TNF-α, and IFN-γ, produced clear increases in the levels of α1 and α5 present on the cell surface. Our observations suggest that the differential effects of PDGF and inflammatory cytokines may be part of the mechanism regulating the expression of α1 and α5 integrins by dermal fibroblasts during wound repair. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Herein, we describe an obligate role for the hematopoietic specific GTPase, RAC2 in endothelial integrin signaling and the postnatal neovascularization response in vivo. Using a Rac2 knockout mouse model, we discovered that despite the presence of both RAC1 and RAC2 protein in endothelial cells, RAC2 is obligately required for the postnatal neovascular response and αvβ3/α4β1/α5β1 integrin-directed migration on vitronectin, H296 and CH271, fibronectin fragments, respectively. The molecular basis for RAC2 specificity was explored. A genetic analysis of Syk −/+ or Syk−/+;Rac2 −/+ mice revealed that SYK kinase is required for the integrin induced activation of RAC2. The analysis of endothelial cells from Rac2−/+ versus Syk−/+;Rac2−/+ mice provided genetic evidence that SYK-RAC2 signaling axis regulates integrin (αvβ3, α4β1 and α5β1) dependent migration. Our results provide evidence that a specific region of the nonreceptor protein tyrosine kinase, SYK, the B linker region containing Y342 and Y346 is required for SYK's regulation of RAC2 and integrin dependent migration. Moreover, the capacity of mice to vascularize the ischemic hindlimb following femoral artery ligation or matrigel plugs was markedly reduced in mice homozygous deficient for the Rac2 gene. These findings identify a novel signaling axis for the induction and potential modulation of postnatal angiogenesis.  相似文献   

15.
16.
Collaborative role of various fibronectin-binding integrins (α5β1, αvβ1 and αvβ6) as mediators of cell adhesion and migration on fibronectin was studied using cultured HaCaT keratinocytes. This cell line spontaneously expressed all three fibronectin-binding integrins. In addition, the expression of αvβ6 integrin was strongly and specifically upregulated by transforming growth factor-β1 (TGFβ1) whereas the amount of other integrins remained practically unchanged on the cell surface. Adhesion, spreading and motility of HaCaT keratinocytes on fibronectin were promoted by TGFβ1. Based on antibody blocking experiments, both untreated and TGFβ1-treated HaCaT cells used αvβ6 integrin as their main fibronectin receptor for cell spreading. In contrast to TGFβ1-treated cells, the untreated cells also needed α5β1 integrin for maximal cell spreading on fibronectin. Combinations of antibodies blocking both of these receptors totally prevented spreading of both untreated and TGFβ1-treated cells. Haptotactic motility of individual HaCaT cells through fibronectin-coated membranes was again mainly dependent on αvβ6 integrin, while αvβ1 and α5β1 integrins played a lesser role both in untreated and TGFβ1-treated HaCaT cells. However, unlike haptotaxis, lateral migration of HaCaT cell sheet was mainly mediated by β1 integrins, and αvβ6 integrin showed a minor role. The migration process appeared to involve a number of β1 integrins that could adaptively replace each other when blocking antibodies were present. Thus, keratinocytes appear to use different fibronectin receptors for different functions, such as cell spreading, haptotaxis and lateral migration. The cells can also adapt to a situation where one receptor is unfunctional by switching to another receptor of the same ligand.  相似文献   

17.
18.
19.
Production of connective tissue growth factor (CCN2, also known as CTGF) is a hallmark of hepatic fibrosis. This study examined early primary cultures of hepatic stellate cells (HSC) for (i) CCN2 regulation of its cognate receptor integrin subunits; and (ii) interactions between CCN2 and integrin α5β1, heparan sulphate proteoglycans (HSPG) or fibronectin (FN) in supporting cell adhesion. HSC were isolated from healthy male Balb/c mice. mRNA levels of CCN2 or α5, β1, αv or β3 integrin subunits were measured in days 1–7 primary culture HSC, and day 3 or day 7 cells treated with recombinant CCN2 or CCN2 small interfering RNA. Interactions between CCN2 and integrin α5β1, HSPG or FN were investigated using an in vitro cell adhesion assay. Co‐incident with autonomous activation over the first 7 days, primary culture HSC increasingly expressed mRNA for CCN2 or integrin subunits. Addition of exogenous CCN2 or knockdown of endogenous CCN2 differentially regulated integrin gene expression in day 3 versus day 7 cells. Either full length CCN2 (‘CCN21–4’) or residues 247–349 containing module 4 alone (‘CCN24’) supported day 3 cell adhesion in an integrin α5β1‐ and HSPG‐dependent fashion. Adhesion of day 3 cells to FN was promoted in an integrin α5β1‐dependent manner by CCN21–4 or CCN24, whereas FN promoted HSPG‐dependent HSC adhesion to CCN21–4 or CCN24. These findings suggest CCN2 regulates integrin expression in primary culture HSC and supports HSC adhesion via its binding of cell surface integrin α5β1, a novel CCN2 receptor in primary culture HSC which interacts co‐operatively with HSPG or FN.  相似文献   

20.
Alteration in mesangial volume, due to an increase of the matrix surrounding mesangial cells, is a hallmark indicator of nephropathy in diabetes. Mesangial cells may also play a significant role in the development of nephropathy. Therefore, we examined the effect of glucose on the expression of integrins by cultured human mesangial cells and their ability to interact with collagen IV, a major component of the mesangial matrix. Human mesangial cells were grown in 5 and 25 mM glucose and their integrin profile was examined by immunoprecipitation and flow cytometry in each experimental condition. The results indicate that when mesangial cells were grown in 25 mM glucose, the expression of integrin subunit α2, was increased, while the α1 subunit was considerably decreased, as compared to cells grown in 5 mM glucose. Additionally, mesangial cells were tested for their ability to adhere to collagen IV in a solid-phase assay in the presence of neutralizing antibodies to integrin subunits. The results of these experiments indicate that both α1 and α2 complexed to β1 (α2β1 and α1β1) are major mesangial cell receptors for adhesion to collagen IV both in 5 and 25 mM glucose. The two receptors act in concert to mediate adhesion of mesangial cells to type IV collagen. When cell surface expression of the α1 subunit in 25 mM glucose was reduced, the α2 subunit was involved in adhesion to a greater extent than it was in 5 mM glucose. Immunoperoxidase histochemical studies localized both α1 and α2 integrin subunits in the mesangium of normal adult kidneys, suggesting that in vivo interaction with collagen IV could involve both of these receptors. These observations suggest that glucose-induced alterations in integrin expression may modify the ability of mesangial cells to interact with collagen IV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号