首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acidic microenvironment around tumor cells is a major determinant in cancer growth, metabolism, and metastasis. However, its role in cancer physiology is still not clearly understood. In the present investigation, an attempt has been made to explore the effect of acidic environment on physiology of cancer cells. Exposure of Raji cells to extracellular acidic environment was associated with enhanced cytosolic calcium level and endoplasmic reticulum stress response. X-box binding protein 1 (XBP1) splicing, CCAAT/enhancer-binding protein homologous protein (CHOP), and glucose-regulated protein 78 kDa (GRP78) upregulation suggested endoplasmic reticulum stress generation. On the other hand, real-time-based upregulation of Bax gene expression and flow cytometric analysis of cytochrome c release as well as enhanced active caspase-3 further confirmed mitochondrion-mediated events leading to induction of apoptosis. The expression of TP53 and p21 was upregulated. These observations collectively strongly suggest that both endoplasmic reticulum stress-mediated calcium release and Bax targeting might be altering mitochondrion membrane potential which in turn could induce secondary apoptotic signals; subsequently, endoplasmic reticulum stress can also lead to nuclear localization of Nuclear factor-κB (NF-κB) which in turn favors p53 mediated apoptotic signals.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-014-0568-6) contains supplementary material, which is available to authorized users.  相似文献   

2.
Oocyte maturation in mouse is associated with a dramatic reorganisation of the endoplasmic reticulum (ER) from a network of cytoplasmic accumulations in the germinal vesicle-stage oocyte (GV) to a network of distinctive cortical clusters in the metaphase II egg (MII). Multiple lines of evidence suggest that this redistribution of the ER is important to prepare the oocyte for the generation of repetitive Ca2+ transients which trigger egg activation at fertilisation. The aim of the current study was therefore to investigate the timecourse and mechanism of ER reorganisation during oocyte maturation. The ER is first restructured at the time of GV-breakdown (GVBD) into a dense network of membranes which envelop and invade the developing meiotic spindle. GVBD is essential for the initiation of ER reorganisation, since ER structure does not change in GV-arrested oocytes. ER reorganisation is also prevented by the microtubule inhibitor nocodazole and by the inhibition of cytoplasmic dynein, a microtubule-associated motor protein. ER redistribution at GVBD is therefore dynein-driven and cell cycle-dependent. Following GVBD the dense network of ER surrounds the spindle during its migration to the oocyte cortex. Cortical clusters of ER are formed close to the time of, but independently of the metaphase I-metaphase II transition. Formation of the characteristic ER clusters is prevented by the depolymerisation of microfilaments, but not of microtubules. These experiments reveal that ER reorganisation during oocyte maturation is a complex multi-step process involving distinct microtubule- and microfilament-dependent phases and indicate a role for dynein in the cytoplasmic changes which prepare the oocyte for fertilisation.  相似文献   

3.
【目的】鉴定巴斯德毕赤酵母ORM1基因;研究ORM1基因缺失对毕赤酵母生长、内质网压力应答、细胞钙稳态调节和活性氧水平等方面的影响。【方法】利用生物信息学软件对毕赤酵母Orm1蛋白进行序列比对和分析;利用PCR介导的同源重组法构建orm1Δ缺失菌株,将回补质粒p IB1-ORM1转入orm1Δ菌株构建回补菌株;研究ORM1基因缺失对毕赤酵母生长的影响;以Fluo-3 AM染色法测定胞质钙含量;以DCFH-DA染色法分析胞内活性氧水平;以实时荧光定量PCR技术研究ORM1基因缺失对毕赤酵母非折叠蛋白应答、钙稳态和抗氧化系统基因表达的影响;使用试剂盒分析毕赤酵母抗氧化系统过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性及谷胱甘肽(GSH)的含量。【结果】在毕赤酵母基因组数据库中比对出酿酒酵母Orm1和Orm2的同源蛋白,并将该蛋白编码基因命名为ORM1;毕赤酵母ORM1基因缺失导致细胞生长受到明显抑制,对衣霉素引起的内质网压力敏感性增强,非折叠蛋白应答激活,细胞钙稳态紊乱,活性氧积累,抗氧化系统激活。【结论】由于非折叠蛋白应答、钙稳态调节、活性氧积累等均与内质网功能息息相关,因此,巴斯德毕赤酵母ORM1基因编码的Orm1蛋白在细胞生长及内质网正常功能的维持过程中发挥重要作用。  相似文献   

4.
In contrast with most other eggs, where the endoplasmic reticulum is mixed with many other organelles, in ascidians, continuous sheets and tubes of endoplasmic reticulum constitute the only prominent organelle in the immediate layer (0.5-1μm) beneath the plasma membrane, and occupies 16–20% of the cortical volume. We took advantage of this unusual stratification of the organelles in the ascidian egg, to carry X-ray microanalysis. Our measurements provide the first estimate of the calcium content of the endoplasmic reticulum network in an egg, and show it is the main calcium store.  相似文献   

5.
Vertebrate embryos generate striking Ca2+ patterns, which are unique regulators of dynamic developmental events. In the present study, we used zebrafish embryos as a model system to examine the developmental roles of Ca2+ during gastrulation. We found that gastrula stage embryos maintain a distinct pattern of cytosolic Ca2+ along the dorsal–ventral axis, with higher Ca2+ concentrations in the ventral margin and lower Ca2+ concentrations in the dorsal margin and dorsal forerunner cells. Suppression of the endoplasmic reticulum Ca2+ pump with 0.5 μM thapsigargin elevates cytosolic Ca2+ in all embryonic regions and induces a randomization of laterality in the heart and brain. Affected hearts, visualized in living embryos by a subtractive imaging technique, displayed either a reversal or loss of left–right asymmetry. Brain defects include a left–right reversal of pitx2 expression in the dorsal diencephalon and a left–right reversal of the prominent habenular nucleus in the brain. Embryos are sensitive to inhibition of the endoplasmic reticulum Ca2+ pump during early and mid gastrulation and lose their sensitivity during late gastrulation and early segmentation. Suppression of the endoplasmic reticulum Ca2+ pump during gastrulation inhibits expression of no tail (ntl) and left–right dynein related (lrdr) in the dorsal forerunner cells and affects development of Kupffer’s vesicle, a ciliated organ that generates a counter-clockwise flow of fluid. Previous studies have shown that Ca2+ plays a role in Kupffer’s vesicle function, influencing ciliary motility and translating the vesicle’s counter-clockwise flow into asymmetric patterns of gene expression. The present results suggest that Ca2+ plays an additional role in the formation of Kupffer’s vesicle.  相似文献   

6.
The augmentation of neurotransmitter and hormone release produced by ouabain inhibition of plasmalemmal Na+/K+-ATPase (NKA) is well established. However, the mechanism underlying this action is still controversial. Here we have shown that in bovine adrenal chromaffin cells ouabain diminished the mobility of chromaffin vesicles, an indication of greater number of docked vesicles at subplasmalemmal exocytotic sites. On the other hand, ouabain augmented the number of vesicles undergoing exocytosis in response to a K+ pulse, rather than the quantal size of single vesicles. Furthermore, ouabain produced a tiny and slow Ca2+ release from the endoplasmic reticulum (ER) and gradually augmented the transient elevations of the cytosolic Ca2+ concentrations ([Ca2+]c) triggered by K+ pulses. These effects were paralleled by gradual increments of the transient catecholamine release responses triggered by sequential K+ pulses applied to chromaffin cell populations treated with ouabain. Both, the increases of K+-elicited [Ca2+]c and secretion in ouabain-treated cells were blocked by thapsigargin (THAPSI), 2-aminoethoxydiphenyl borate (2-APB) and caffeine. These results are compatible with the view that ouabain may enhance the ER Ca2+ load and facilitate the Ca2+-induced-Ca2+ release (CICR) component of the [Ca2+]c signal generated during K+ depolarisation. This could explain the potentiating effects of ouabain on exocytosis.  相似文献   

7.
The endoplasmic reticulum (ER) is a complex, multifunctional organelle comprised of a continuous membrane and lumen that is organized into a number of functional regions. It plays various roles including protein translocation, folding, quality control, secretion, calcium signaling, and lipid biogenesis. Cellular protein homeostasis is maintained by a complicated chaperone network, and the largest functional family within this network consists of proteins containing tetratricopeptide repeats (TPRs). TPRs are well-studied structural motifs that mediate intermolecular protein–protein interactions, supporting interactions with a wide range of ligands or substrates. Seven TPR-containing proteins have thus far been shown to localize to the ER and control protein organization and homeostasis within this multifunctional organelle. Here, we discuss the roles of these proteins in controlling ER processes and organization. The crucial roles that TPR-containing proteins play in the ER are highlighted by diseases or defects associated with their mutation or disruption.  相似文献   

8.
Triterpenoids are a novel class of compounds being investigated as potential therapeutic agents for the treatment of prostate cancer and other malignancies. Asiatic acid (AA) is a member of the ursane family of triterpenoids and has anticancer activity, but its mechanism of action is not completely understood. To investigate its mechanism of action, PPC-1 prostate cancer cells were treated with AA at increasing concentrations and times. AA induced rapid caspase-dependent and independent cell death that peaked within 8 h of treatment. AA-induced death was associated with early activation of caspases 2, 3, and 8, but not caspase 9. Within 2.5 h of treatment, release of calcium from intracellular stores and dilatation of the endoplasmic reticulum was observed. Thus, disruption of the endoplasmic reticulum and alterations in calcium homeostasis are early events in AA-induced death.  相似文献   

9.
10.
Methionine-R-sulfoxide reductases (MsrBs) catalyze a stereospecific reduction of methionine-R-sulfoxides to methionines in proteins. Mammals possess three MsrB genes. MsrB1 (SelR) is a selenoprotein located in the cytosol and nucleus, MsrB2 (CBS-1) is a mitochondrial protein, and MsrB3 is a recently identified protein with an unusual localization pattern. Human MsrB3 occurs in two protein forms, MsrB3A and MsrB3B, which can be targeted to the endoplasmic reticulum (ER) and mitochondria, respectively. These forms are generated by alternative first exon splicing that introduces contrasting N-terminal signal peptides. Herein, we characterized mouse MsrB3 and found no evidence of alternative splicing of its gene. The ER signal was located upstream of the predicted mitochondrial signal sequence in a single coding region, whose product was targeted to the ER. Although the mitochondrial signal could function if placed at the N-terminus, it did not target MsrB3 to mitochondria as part of the entire coding region. In addition, immunoblot assays detected no mitochondrial MsrB3 in examined mouse tissues. The data suggest that, in mice, MsrB3 is largely or exclusively an ER-resident protein, and that the reduction of methionine-R-sulfoxides in different cellular compartments is provided by individual MsrB isozymes.  相似文献   

11.
Specific changes in the two-dimensional gel electrophoretic pattern of mouse oocyte phosphoproteins precede germinal vesicle breakdown (GVBD). We report that changes in the relative abundance of phosphoamino acids occurred prior to GVBD. We also report data that further strengthen the close association of the changes in phosphoprotein patterns with resumption of meiosis. The calmodulin antagonist W7, which transiently inhibits GVBD, inhibited partially at least two of the maturation-associated phosphoprotein changes, the dephosphorylation of a 60,000 Mr phosphoprotein and the phosphorylation of a 36,000 Mr protein. In oocytes from juvenile mice that were incompetent to resume meiosis, neither these changes nor the phosphorylation of proteins of Mr 24,000 and 28,000 occurred; all these changes occurred, however, in oocytes from juvenile mice that were competent to resume meiosis. The microinjection of the heat-stable inhibitor of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKI), which induces GVBD in fully grown oocytes, did not induce GVBD in meiotically incompetent oocytes. Microinjected PKI did not induce the increased protein phosphorylations associated with maturation, but it did induce the dephosphorylation of the 60,000 Mr phosphoprotein. These results provide molecular markers for commitment to resume meiosis in GV-intact oocytes and indicate a potential basis for meiotic incompetence.  相似文献   

12.
ALG-2 (apoptosis linked gene 2 product) is a calcium binding protein for which no clear cellular function has been established. In this study we identified Scotin as a novel ALG-2 target protein containing 6 PXY and 4 PYP repeats, earlier identified in the ALG-2 binding regions of AIP1/ALIX and TSG101, respectively. An in vitro synthesized C-terminal fragment of Scotin bound specifically to immobilized recombinant ALG-2 and tagged ALG-2 and Scotin were shown by immunoprecipitation to interact in MCF7 and U2OS cell lines. Furthermore ALG-2 bound to endogenous Scotin in extracts from mouse NIH3T3 cells. Overexpression of ALG-2 led to accumulation of Scotin in MCF7 and H1299 cells. In vitro and in vivo binding of ALG-2 to Scotin was demonstrated to be strictly calcium dependent indicating a role of this interaction in calcium signaling pathways.  相似文献   

13.
Organelle positioning and movement in oocytes is largely mediated by microtubules (MTs) and their associated motor proteins. While yet to be studied in germ cells, cargo trafficking in somatic cells is also facilitated by specific recognition of acetylated MTs by motor proteins. We have previously shown that oocyte-restricted PADI6 is essential for formation of a novel oocyte-restricted fibrous structure, the cytoplasmic lattices (CPLs). Here, we show that α-tubulin appears to be associated with the PADI6/CPL complex. Next, we demonstrate that organelle positioning and redistribution is defective in PADI6-null oocytes and that alteration of MT polymerization or MT motor activity does not induce organelle redistribution in these oocytes. Finally, we report that levels of acetylated microtubules are dramatically suppressed in the cytoplasm of PADI6-null oocytes, suggesting that the observed organelle redistribution failure is due to defects in stable cytoplasmic MTs. These results demonstrate that the PADI6/CPL superstructure plays a key role in regulating MT-mediated organelle positioning and movement.  相似文献   

14.
Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage.  相似文献   

15.
16.
In the present work, we have used the in silico subtraction methodology to identify six new mouse genes similar to NALP5/MATER, whose ESTs were represented almost exclusively in egg libraries. Five genes were selected for RT-PCR and/or in situ hybridization. These experiments confirmed their oocyte restricted expression. Five of these genes are localized on mouse chromosome 7, as is NALP5/MATER; among them, three are localized in a 300 kb cluster.  相似文献   

17.
Summary Light-microscopic analysis of mouse liver homogenates six days after partial hepatectomy, showed a higher percentage of nuclei with adherent cytoplasm than homogenates from normal liver. This observation was true for animals with either a slow or rapid recovery of body weight after the operation. The phenomenon was not a function of the changes in the proportions of parenchymal and non-parenchymal tissue in the regenerating liver.Electron-microscopic analysis of random samples from normal and regenerating livers indicated an increase in the perinuclear rough endoplasmic reticulum, and a displacefment of the glycogen depots within the regenerating cells six days after partial hepatectomy.The marked resistance towards homogenization, shown by the cytoplasm of the regenerating cells, may have been due to the observed increase of perinuclear membranes. However, qualitative changes of the cell membranes and a general decrease of proteolytic activity connected with liver regeneration may also have contributed.  相似文献   

18.
The making and breaking of the endoplasmic reticulum   总被引:1,自引:0,他引:1  
The endoplasmic reticulum (ER) is a dynamic organelle central to many essential cellular functions. It is an important calcium store, which functions in cellular signal transduction cascades. It is also the site of entry for secreted proteins into the secretory pathway. Lumenal enzymes will fold and glycosylate these proteins, and if a protein is destined to be secreted, it will be packaged into membrane vesicles that bud off from the ER. The ER is also the site where most cellular lipids are synthesized. It is contiguous with the nuclear envelope, which serves as a diffusion barrier to control entry into and out of the nucleus. In the life cycle of a cell, the ER is in a constant flux of membrane traffic. What maintains the ER in the shape of an intact reticulum among this constant flux of material? We discuss the mechanisms that contribute to the biogenesis of the ER, the maintenance of the organelle, as well as processes that give the ER its characteristic shape and pattern of inheritance.  相似文献   

19.
Abstract

Context: Endoplasmic reticulum (ER) calcium depletion is associated with diverse diseases, including cardiac, hepatic, and neurologic diseases.

Objective: The aim of the present study was to identify and characterize an endogenous protein that could be used to monitor ER calcium depletion comparably to a previously described exogenous reporter protein.

Materials and methods: The use of a selective esterase-fluorescein diester pair allowed for carboxylesterase activity in extracellular fluid to be measured using a fluorescent readout. Cell culture media from three different cell lines, rat plasma, and human serum all possess quantifiable amounts of esterase activity.

Results: Fluorescence produced by the interaction of carboxylesterases with a fluorescein diester substrate tracks with pharmacological and physiological inducers of ER calcium depletion. The fluorescence measured for in vitro and in vivo samples were consistent with ER calcium depletion being the trigger for increased esterase activity.

Discussion: Decreased luminal ER calcium causes ER resident esterases to be released from the cell, and, when assessed concurrently with other disease biomarkers, these esterases may provide insight into the role of ER calcium homeostasis in human diseases.

Conclusion: Our results indicate that carboxylesterases are putative markers of ER calcium dysfunction.  相似文献   

20.
Folding of viral envelope glycoproteins in the endoplasmic reticulum   总被引:1,自引:0,他引:1  
Viral glycoproteins fold and oligomerize in the endoplasmic reticulum of the host cell. They employ the cellular machinery and receive assistance from cellular folding factors. During the folding process, they are retained in the compartment and their structural quality is checked by the quality control system of the endoplasmic reticulum. A special characteristic that distinguishes viral fusion proteins from most cellular proteins is the extensive conformational change they undergo during fusion of the viral and cellular membrane. Many viral proteins fold in conjunction with and dependent on a viral partner protein, sometimes even synthesized from the same mRNA. Relevant for folding is that viral glycoproteins from the same or related virus families may consist of overlapping sets of domain modules. The consequences of these features for viral protein folding are at the heart of this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号