首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study explored the effects of inhibition of endoplasmic reticulum (ER) Ca2+-ATPase on lipopolysaccharide (LPS)-induced protein kinase C (PKC) activation, nuclear factor-κB (NF-κB) translocation, inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in RAW 264.7 macrophages. Thapsigargin (TG) irreversibly inhibits ER Ca2+-ATPase and LPS-induced NO production is reduced even after washout. TG also attenuated LPS-stimulated iNOS expression by using immunoblot analysis. However, another distinct fully reversible ER Ca2+-ATPase inhibitor, 2,5-di-tert-butylhydroquinone (DBHQ), ionophore A23187 and ionomycin could exert a similar effect to TG in increasing intracellular calcium concentration; however, these agents could not mimic TG in reducing iNOS expression and NO production. LPS increased PKC- and -β activation, and TG pretreatment attenuated LPS-stimulated PKC activation. Not did pretreatment with DBHQ, A23187 and ionomycin reduce LPS-stimulated PKC activation. Furthermore, NF-κB-specific DNA–protein-binding activity in the nuclear extracts was enhanced by treatment with LPS, and TG pretreatment attenuated LPS-stimulated NF-κB activation. None of DBHQ, A23187 and ionomycin pretreatment reduced LPS-stimulated NF-κB activation. These data suggest that persistent inhibition of ER Ca2+-ATPase by TG would influence calcium release from ER Ca2+ pools that was stimulated by the LPS activated signal processes, and might be the main mechanism for attenuating PKC and NF-κB activation that induces iNOS expression and NO production.  相似文献   

2.
Nitric oxide induces BNIP3 expression that causes cell death in macrophages   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is involved in many physiological processes and also causes pathological effects by inducing apoptosis. It can enhance or suppress apoptosis depending on its concentration and the cell type involved. In this report, we used cDNA microarray analysis to show that SNAP, an NO donor, strongly induces Bcl-2/adenovirus E1B 19kDa-interacting protein 3 (BNIP3) in macrophages. BNIP3 is a mitochondrial pro-apoptotic protein that contains a Bcl-2 homology 3 domain and a COOH-terminal transmembrane (TM) domain. Macrophages activated by LPS/IFN-gamma produce nitric oxide synthase 2 (NOS2) and release endogenous NO. Expression of BNIP3 was also induced in macrophages by LPS/IFN-gamma, and the induction was blocked by a NOS2 inhibitor, S-methyl-isothiourea. Peritoneal macrophages from NOS2-null mice failed to produce BNIP3 in response to LPS/IFN-gamma. We conclude that BNIP3 expression in macrophages is controlled by the intracellular level of nitric oxide. Overexpression of BNIP3 but not of BNIP3 deltaTM, a BNIP3 mutant without the TM domain and C-terminal tail, led to apoptosis of the cells. Promoter analysis showed that the region between -281 and -1 of the 5'-upstream enhancer region of murine BNIP3 was sufficient for NO-dependent expression of BNIP3.  相似文献   

3.
We have already reported that TGF-beta could be involved in the inhibitory effects of negatively charged liposomes composed of phosphatidylserine (PS-liposome) on the production of nitric oxide (NO) by mouse peritoneal macrophages stimulated with LPS [Biochem. Biophys. Res. Commun. 281 (2001) 614]. In this paper, we explored the mechanism by which PS-liposomes promote the production of TGF-beta and the involvement of MAP kinases. When macrophages were treated with PS-liposomes, extracellular signal-regulated kinase (ERK), a member of MAP kinase superfamily, was activated quickly and potently. However, no activation was observed with p38 MAP kinase. TGF-beta production was completely inhibited by U0126, a specific inhibitor for ERK. Furthermore, TGF-beta neutralizing antibody and U0126 decreased the inhibitory effect of PS-liposomes on NO production by macrophages. These findings suggested that TGF-beta is the factor produced by PS-liposomes that suppresses production of NO, and the ERK signaling pathway is intimately involved in TGF-beta production by macrophages following treatment with PS-liposomes.  相似文献   

4.
Modification of cytokine production by gender hormones has been postulated to affect disease susceptibility and outcome. Here we investigate the effect of gender and the menstrual cycle on production of cytokines. Mononuclear cells were isolated every week for 10 consecutive weeks from healthy pre-menopausal women and men. TNF and IL-10 mRNA and protein levels were measured as well as membrane CD14 and intracellular TLR4 protein. Endotoxin stimulation of mononuclear cells from men produced more TNF and IL10 mRNA than cells from women. TLR4 expression was also significantly higher in cells from men. These gender differences in the immune response may help to elucidate the sexual dimorphism observed in infectious diseases.  相似文献   

5.
6.
7.
Vesicles consisting of pure trehalose dicorynomycolate (TDCM), the corynebacterial analog of the most studied mycobacterial glycolipid 'cord factor', were isolated from Corynebacterium glutamicum cells by mild detergent treatment; these induced in vivo a macrophage priming similar to that obtained with mycobacterial-derived trehalose dimycolate. In vitro, both TDCM and bacterial lipopolysaccharide (LPS) induced in macrophages the production of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha), endotoxin tolerance, and were primed for an enhanced secondary NO response to LPS. Interferon-gamma pretreatment did not influence the LPS-induced TNF-alpha response, but considerably increased the TDCM-induced response.  相似文献   

8.
The interactions between NO and O(2) in activated macrophages were analysed by incorporating previous cell culture and enzyme kinetic results into a novel reaction-diffusion model for plate cultures. The kinetic factors considered were: (i) the effect of O(2) on NO production by inducible NO synthase (iNOS); (ii) the effect of NO on NO synthesis by iNOS; (iii) the effect of NO on respiratory and other O(2) consumption; and (iv) the effects of NO and O(2) on NO consumption by a possible NO dioxygenase (NOD). Published data obtained by varying the liquid depth in macrophage cultures provided a revealing test of the model, because varying the depth should perturb both the O(2) and the NO concentrations at the level of the cells. The model predicted that the rate of NO(2)(-) production should be nearly constant, and that the net rate of NO production should decline sharply with increases in liquid depth, in excellent agreement with the experimental findings. In further agreement with available results for macrophage cultures, the model predicted that net NO synthesis should be more sensitive to liquid depth than to the O(2) concentration in the headspace. The main reason for the decrease in NO production with increasing liquid depth was the modulation of NO synthesis by NO, with O(2) availability playing only a minor role. The model suggests that it is the ability of iNOS to consume NO, as well as to synthesize it, that creates very sensitive feedback control, setting an upper bound on the NO concentration of approximately 1 microM. The effect of NO consumption by other possible pathways (e.g., NOD) would be similar to that of iNOS, in that it would help limit net NO production. The O(2) utilized during enzymatic NO consumption is predicted to make the O(2) demands of activated macrophages much larger than those of unactivated ones (where iNOS is absent); this remains to be tested experimentally.  相似文献   

9.
10.
11.
本研究以鼠源巨噬细胞RAW264.7为模型,研究CD36和胞外信号调节激酶(ERK )通路对脂多糖(LPS)诱导巨噬细胞分泌炎症因子的影响。首先用100 ng/ml LPS刺激正常及小干扰RNA (siRNA )技术沉默CD36表达的巨噬细胞16 h ,检测巨噬细胞的ERK活性及分泌炎症因子如肿瘤坏死因子α(TNF‐α)、白细胞介素6(IL‐6)和IL‐10的水平;继而以20 nmol/L ERK抑制剂处理细胞,再用LPS刺激,检测以上各项指标的变化,进一步明确ERK通路与LPS诱导巨噬细胞分泌炎症因子的相关性。结果显示,经LPS刺激,巨噬细胞的ERK活性显著增强,分泌的促炎因子 TNF‐α和 IL‐6显著增高,抑炎因子 IL‐10水平无明显变化;与CD36正常表达的巨噬细胞相比,CD36表达下降的巨噬细胞ERK活性及促炎因子TNF‐α、IL‐6水平显著下降,抑炎因子IL‐10显著增多。与未处理组相比,ERK抑制剂预处理的巨噬细胞中LPS诱导的ERK活性显著降低,促炎因子 TNF‐α和 IL‐6水平降低,抑炎因子 IL‐10水平升高。结果提示,LPS能通过其受体———CD36,激活巨噬细胞内ERK活性,进而促进巨噬细胞促炎因子的分泌。  相似文献   

12.
The outcome of malarial anemia is determined by a complex interplay between pro-inflammatory and anti-inflammatory cytokines, its severity associated with accumulation of hemozoin (Hz) in macrophages, elevated IL-10 responses and impaired IL-12 production. Although free heme contributes to malarial anemia by inducing oxidative damage of red blood cells (RBCs) and enhancing their clearance by phagocytes, its impact on IL-12/IL-10 interactions has not been fully characterized. Herein, the effect of hemin (HE) on IL-12 and IL-10 responses was studied in murine bone marrow-derived macrophages (BMDM) and compared with synthetic Hz. Our data reveal that HE induces modest inhibition of IL-12p70 responses to lipopolysaccharide (LPS) whereas Hz significantly impairs IL-12p70 responses to IFNγ/LPS through down-regulation of IL-12p35 and p40 gene expression. Although reactive oxygen species (ROS) are generated after short-term exposure to HE and Hz, prolonged exposure to these iron protoporphyrins has opposite effects on the cellular redox status, HE being the only compound able to promote persistent ROS production. Accordingly, the inhibitory effect of HE on IL-12p70 seems sustained by redox-dependent induction of IL-10 and is partially controlled by the p38 mitogen-activated protein kinase (MAPK) signalling pathway. Indeed, treatment with n-acetylcysteine (NAC) or with the p38 MAPK inhibitor SB203580 inhibits IL-10 responses and significantly restores IL-12p70 responses to IFNγ/LPS in HE-conditioned BMDM. Our results suggest that oxidant stress induced by free heme may potentially contribute to sustained production of IL-10 and down-regulation of IL-12 responses in malaria.  相似文献   

13.
14.
The expression and function of discoidin domain receptor 1 (DDR1) in T cells are still poorly explored. We have recently shown that activation of primary human T cells via their T cell receptor leads to increased expression of DDR1, which promoted their migration in three-dimensional collagen. In the present study, we provide evidence that activated T cells bind collagen through DDR1. We found that the DDR1:Fc blocking molecule significantly reduced the ability of activated T cells to bind soluble biotinylated collagen. However, DDR1:Fc had no impact on the adhesion of activated T cells to collagen and overexpression of DDR1 in Jurkat T cells did not enhance their adhesion. Together, our results indicate that DDR1 can promote T cell migration without enhancing adhesion to collagen, suggesting that it can contribute to the previously described amoeboid movement of activated T cells in collagen matrices. Our results also show that CD28, in contrast to IL-2 expression, did not costimulate the expression of DDR1 in primary human T cells. Using specific inhibitors, we demonstrated that TCR-induced expression of DDR1 in T cells is regulated by the Ras/Raf/ERK MAP Kinase and PKC pathways but not by calcium/calcineurin signaling pathway or the JNK and P38 MAP Kinases. Thus, our study provides additional insights into the physiology of DDR1 in T cells and may therefore further our understanding of the regulatory mechanisms of T cell migration.  相似文献   

15.
Our previous study has demonstrated the potentiation by uridine triphosphate (UTP) of nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated murine J774 macrophages. In this study, we found that the amount of interleukin-6 (IL-6) release in response to LPS stimulation was greatly enhanced in the presence of UTP. This enhancement exhibited concentration dependence and occurred after 8 h of treatment with LPS. RT-PCR analysis indicated that the steady-state level of IL-6 mRNA induced by LPS was apparently increased upon co-addition of UTP. The potentiation by UTP was inhibited by the treatment with U73122 (a phosphatidylinositol-phospholipase C inhibitor), BAPTA/AM (an intracellular Ca2+ chelator), KN-93 (a selective inhibitor of calmodulin-dependent protein kinase) or PDTC (a nuclear factor B inhibitor). To understand the cross-regulation among NO, PGE2 and IL-6, all of which are dramatically induced after LPS stimulation, the effects of L-NAME (a nitric oxide synthase inhibitor), indomethacin (a cyclooxygenase inhibitor), NS-398 (a cycloxygenase-2 inhibitor) and IL-6 antibody were tested. The results revealed the positive regulation between PGE2 and IL-6 synthesis because NS-398 and indomethacin inhibited LPS plus UTP-induced IL-6 release, and IL-6 antibody attenuated LPS plus UTP-induced PGE2 release. Taken together these results reinforce the role of UTP as a regulatory element in inflamed sites by demonstrating the capacity of this nucleotide to potentiate LPS-induced release of inflammatory mediators.  相似文献   

16.
Osteoblast differentiation is regulated by the presence of collagen type I (COL I) extracellular matrix (ECM). We have recently demonstrated that Factor XIIIA (FXIIIA) transglutaminase (TG) is required by osteoblasts for COL I secretion and extracellular deposition, and thus also for osteoblast differentiation. In this study we have further investigated the link between COL I and FXIIIA, and demonstrate that COL I matrix increases FXIIIA levels in osteoblast cultures and that FXIIIA is found as cellular (cFXIIIA) and extacellular matrix (ecmFXIIIA) forms. FXIIIA mRNA, protein expression, cellular localization and secretion were enhanced by ascorbic acid (AA) treatment and blocked by dihydroxyproline (DHP) which inhibits COL I externalization. FXIIIA mRNA was regulated by the MAP kinase pathway. Secretion of ecmFXIIIA, and its enzymatic activity in conditioned medium, were also decreased in osteoblasts treated with the lysyl oxidase inhibitor β-aminopropionitrile, which resulted in a loosely packed COL I matrix. Osteoblasts secrete a latent, inactive dimeric ecmFXIIIA form which is activated upon binding to the matrix. Monodansyl cadaverine labeling of TG substrates in the cultures revealed that incorporation of the label occurred at sites where fibronectin co-localized with COL I, indicating that ecmFXIIIA secretion could function to stabilize newly deposited matrix. Our results suggest that FXIIIA is an integral part of the COL I deposition machinery, and also that it is part of the ECM-feedback loop, both of which regulate matrix deposition and osteoblast differentiation.  相似文献   

17.
Three-week exercise training decreased the steady state level of beta(2)-adrenergic receptor (beta(2)AR) mRNA in peritoneal macrophages from BALB/c mice. When peritoneal macrophages from both exercise-trained and sedentary control mice were stimulated with lipopolysaccharide (LPS), interleukin (IL)-12 mRNA and protein expression was markedly higher in trained mice than in control mice. To determine whether enhanced production of IL-12 was associated with decreased expression of beta(2)AR, we transfected the macrophage cell line, RAW264, with a eukaryotic expression vector containing beta(2)ar cDNA, establishing a cell line overexpressing beta(2)AR (RAWar). Following LPS stimulation, IL-12 mRNA and protein expression was significantly lower in RAWar cells than in RAW264 cells transfected with vector alone (RAWvec). Furthermore, when the expression of transfected beta(2)AR in RAWar cells was down-regulated by a tetracycline repressor-regulated mammalian expression system, expression of IL-12 mRNA and protein following LPS stimulation tended to return to the levels in RAWvec cells. These findings indicate that macrophage production of IL-12 following LPS stimulation is regulated by the expression level of beta(2)AR, suggesting that the down-regulation of beta(2)AR expression associated with exercise training improves IL-12-induced type 1 helper T cell-mediated immune responses.  相似文献   

18.
In the present study, we examined the in vitro effect of Cryptococcus neoformans on the production of interleukin-12 (IL-12) and IL-10 by murine macrophages. At a dose of 1 x 10(5), 1 x 10(6) or 1 x 10(7) ml-1, a highly virulent strain of C. neoformans (strain YC-11) suppressed the production of IL-12p40 by a murine macrophage cell line, J774.1 stimulated with lipopolysaccharide (LPS) and interferon (IFN)-gamma, while the production of IL-10 was not inhibited, but rather slightly augmented. The suppression of IL-12p40 production did not change by neutralizing anti-IL-10 mAb. A direct contact of C. neoformans with macrophages was largely involved in this inhibitory effect, since placement of a 0.45 micron pore membrane between the organism and macrophages prevented such effect. On the other hand, the culture supernatant of YC-11 did not inhibit macrophage IL-12p40 production when used at a lower dose, which contained an equivalent amount of capsular polysaccharide to that in the supernatant of YC-11 cultured at 1 x 10(5) or 1 x 10(6) ml-1, although it showed a small suppression at higher doses. Our results suggest that C. neoformans may suppress the induction of Th1 responses by inhibiting macrophage IL-12 production predominantly through a direct contact-dependent mechanism and to a lesser extent by a certain soluble factor(s) released from this microorganism.  相似文献   

19.
To study the signaling pathway involved in the regulation of galectin-3 expression we used phorbol ester to stimulate macrophage differentiation of THP-1 cells. Treatment with phorbol 12-myristate 13-acetate (PMA) increased significantly the level of expression of galectin-3 in THP-1 cells. PMA-induced galectin-3 overexpression was blocked by: protein kinase C inhibitors staurosporine, calphostin C, and apigenin; tyrosine-specific protein kinase inhibitors genistein and tyrphostin A25; PD 98059, a selective inhibitor of mitogen-activated protein kinase (MAPK) kinase 1 (MEK1 or MKK1); and SB 203580, a specific inhibitor of p38 MAPK. Galectin-3 up-regulation was not affected by exposure to two inhibitors of cAMP-dependent protein kinase (PKA), H-89 and KT5720. Co-transfection of pPG3.5, a plasmid vector containing the rabbit galectin-3 promoter and the constructs pMCL-MKK1 N3 or pRC-RSV-MKK3Glu that constitutively express MKK1 and MKK3, raised the activity of galectin-3 promoter by 185% and 110%, respectively. Co-transfection with a Ha-Ras expression vector stimulated galectin-3 promoter activity approximately 10-fold. Expression of c-Jun or v-Jun raised the level of galectin-3 promoter activity more the three- and fourfold, respectively. Co-transfection of c-Jun and pPG3.5 5'-upstream deletion mutants resulted in a reduction of the galectin-3 promoter activity by 50% to 80%. Transfection of c-Jun, v-Jun or Ha-Ras increased significantly galectin-3 protein in THP-1 cells. These findings indicated that Ras/MEKK1/MKK1-dependent/AP-1 signal transduction pathway plays an important role in the expression of galectin-3 in PMA-stimulated macrophages. We further investigated the effect of modified lipoproteins on galectin-3 expression in macrophages. Murine resident peritoneal macrophages loaded with acetylated low-density lipoprotein (AcLDL) or oxidized LDL (OxLDL) showed increased galectin-3 protein and mRNA. These results showed that treatment of macrophages with PMA or modified lipoproteins results in galectin-3 overexpression. These findings may explain the enhanced expression of galectin-3 in atherosclerotic foam cells and suggest that Ras/MAPK signal transduction pathway is involved in controlling this gene.  相似文献   

20.
Ornithine decarboxylase (ODC) is the first and rate-controlling enzyme in the synthesis of polyamines, which are essential for normal cell growth. We have previously demonstrated that IL-4 and IL-13 can stimulate rat aortic smooth muscle cell (RASMC) proliferation. The objective of this study was to determine whether IL-4 and IL-13 induce cell proliferation by upregulating ODC expression in RASMC. The results revealed that incubation of RASMC with IL-4 and IL-13 for 24 h caused four- to fivefold induction of ODC catalytic activity. The increased ODC catalytic activity was attributed to the increased expression of ODC mRNA. Moreover, these observations were paralleled by increased production of polyamines. We further investigated the signal transduction pathways responsible for ODC induction by IL-4 and IL-13. The data illustrated that PD-98059, a MEK (MAPK kinase) inhibitor, LY-294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, and H-89, a protein kinase A (PKA) inhibitor, substantially decreased the induction of ODC catalytic activity and ODC mRNA expression induced by IL-4 and IL-13, suggesting positive regulation of the ODC gene by ERK, PI3K, and PKA pathways. Interestingly, dexamethasone, a known inhibitor of cell proliferation, completely abrogated the response of RASMC to IL-4 and IL-13. Furthermore, the inhibition of ODC by these inhibitors led to the reduced production of polyamines and decreased DNA synthesis as monitored by [(3)H]thymidine incorporation. Our data indicate that upregulation of ODC by IL-4 and IL-13 might play an important role in the pathophysiology of vascular disorders characterized by excessive smooth muscle growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号