首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stefin B (cystatin B) is an endogenous cysteine cathepsin inhibitor, and the loss-of-function mutations in the stefin B gene were reported in patients with Unverricht-Lundborg disease (EPM1). In this study we demonstrated that stefin B-deficient (StB KO) mice were significantly more sensitive to the lethal LPS-induced sepsis and secreted higher amounts of pro-inflammatory cytokines IL-1β and IL-18 in the serum. We further showed that increased caspase-11 gene expression and better pro-inflammatory caspase-1 and -11 activation determined in StB KO bone marrow-derived macrophages resulted in enhanced IL-1β processing. Pretreatment of macrophages with the cathepsin inhibitor E-64d did not affect secretion of IL-1β, suggesting that the increased cathepsin activity determined in StB KO bone marrow-derived macrophages is not essential for inflammasome activation. Upon LPS stimulation, stefin B was targeted into the mitochondria, and the lack of stefin B resulted in the increased destabilization of mitochondrial membrane potential and mitochondrial superoxide generation. Collectively, our study demonstrates that the LPS-induced sepsis in StB KO mice is dependent on caspase-11 and mitochondrial reactive oxygen species but is not associated with the lysosomal destabilization and increased cathepsin activity in the cytosol.  相似文献   

2.
Stefin B (cystatin B) is an inhibitor of lysosomal cysteine cathepsins and does not inhibit cathepsin D, E (aspartic) or cathepsin G (serine) proteinases. In this study, we have investigated apoptosis triggered by camptothecin, staurosporin (STS), and anti-CD95 monoclonal antibody in the thymocytes from the stefin B-deficient mice and wild-type mice. We have observed increased sensibility to STS-induced apoptosis in the thymocytes of stefin B-deficient mice. Pretreatment of cells with pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone completely inhibited phosphatidylserine externalization and caspase activation, while treatment with inhibitor of calpains- and papain-like cathepsins (2S,3S)-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation nor phosphatidylserine exposure. We conclude that sensitization to apoptosis induced by STS in thymocytes of stefin B-deficient and wild-type mice is not dependent on cathepsin inhibition by stefin B.  相似文献   

3.
4.
5.
Ma F  Li Y  Jia L  Han Y  Cheng J  Li H  Qi Y  Du J 《PloS one》2012,7(5):e35144
Interleukin-6 (IL-6) is an important cytokine participating in multiple biologic activities in immune regulation and inflammation. IL-6 has been associated with cardiovascular remodeling. However, the mechanism of IL-6 in hypertensive cardiac fibrosis is still unclear. Angiotensin II (Ang II) infusion in mice increased IL-6 expression in the heart. IL-6 knockout (IL-6-/-) reduced Ang II-induced cardiac fibrosis: 1) Masson trichrome staining showed that Ang II infusion significantly increased fibrotic areas of the wild-type mouse heart, which was greatly suppressed in IL-6-/- mice and 2) immunohistochemistry staining showed decreased expression of α-smooth muscle actin (α-SMA), transforming growth factor β1 (TGF-β1) and collagen I in IL-6-/- mouse heart. The baseline mRNA expression of IL-6 in cardiac fibroblasts was low and was absent in cardiomyocytes or macrophages; however, co-culture of cardiac fibroblasts with macrophages significantly increased IL-6 production and expression of α-SMA and collagen I in fibroblasts. Moreover, TGF-β1 expression and phosphorylation of TGF-β downstream signal Smad3 was stimulated by co-culture of macrophages with cardiac fibroblasts, while IL-6 neutralizing antibody decreased TGF-β1 expression and Smad3 phosphorylation in co-culture of macrophage and fibroblast. Taken together, our results indicate that macrophages stimulate cardiac fibroblasts to produce IL-6, which leads to TGF-β1 production and Smad3 phosphorylation in cardiac fibroblasts and thus stimulates cardiac fibrosis.  相似文献   

6.
Differences in components of innate anti-viral immune responses may account for the contrast in susceptibility to Theiler's murine encephalomyelitis virus (TMEV) between SJL/J and B10.S mice. Herein, the expression of IL-12, interferon (IFN)-beta, Toll-like receptors 3 (TLR3), TLR7, and mitogen-activated protein (MAP)-kinases was evaluated in SJL/J and B10.S macrophages infected with TMEV. Twenty-four hours after infection, SJL/J macrophages exhibited higher levels of TMEV RNA, IL-12 p40, and TLR3 but lower levels of IL-12 p70 and the IL-12 p35 subunit compared with B10.S macrophages. Addition of exogenous IL-12 p70 or IFN-beta increased the resistance of SJL/J macrophages to TMEV infection. To assess MAP-kinases, macrophages were pretreated with the p38 MAP-kinase inhibitor SB203580 or extracellular signal-regulated kinases (ERK) MAP-kinase inhibitor U0126 before TMEV infection. U0126 reduced SJL/J but increased B10.S macrophage expression of IL-12 p40 and p70 in response to TMEV. U0126 decreased the IL-12 p35 response of SJL/J macrophages. To assess TLR7, SJL/J and B10.S macrophages were stimulated with loxoribine, a TLR7 ligand. Loxoribine induced more IL-12 p70 production and p35 expression in B10.S than SJL/J macrophages. U0126 increased loxoribine-induced expression of IL-12 p40 and IL-12 p70 in B10.S but not SJL/J macrophages. Thus, differences in production of IL-12 p70 due to expression of the p35 subunit and in activity of TLR7, as well as activation of factors downstream of ERK MAP-kinases likely underlie the disparity in innate immunity between SJL/J and B10.S macrophages to TMEV.  相似文献   

7.
We report, herein, an attempt to determine whether an IL-10-induced immunological state affects the response of macrophages against Salmonella Typhimurium (ST). Pretreatment with mrIL-10 induced the intracellular invasion of ST into macrophages in a dose-dependent manner. It also activated AKT phosphorylation, cyclin D1, Bcl-XL, and COX-2 upon ST infection, which may correlate with Salmonella’s survival within the macrophages. However, I-κB phosphorylation was shown to be inhibited, along with the expression of TNF-α and MIP-2α mRNA. Therefore, IL-10 not only suppresses the bactericidal response of macrophages against ST, but also ultimately causes infected macrophages to function as hosts for ST replication.  相似文献   

8.
TC Moore  KL Bush  L Cody  DM Brown  TM Petro 《Journal of virology》2012,86(19):10841-10851
During Theiler's murine encephalomyelitis virus (TMEV) infection of macrophages, it is thought that high interleukin-6 (IL-6) levels contribute to the demyelinating disease found in chronically infected SJL/J mice but absent in B10.S mice capable of clearing the infection. Therefore, IL-6 expression was measured in TMEV-susceptible SJL/J and TMEV-resistant B10.S macrophages during their infection with TMEV DA strain or responses to lipopolysaccharide (LPS) or poly(I · C). Unexpectedly, IL-6 production was greater in B10.S macrophages than SJL/J macrophages during the first 24 h after stimulation with TMEV, LPS, or poly(I · C). Further experiments showed that in B10.S, SJL/J, and RAW264.7 macrophage cells, IL-6 expression was dependent on extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and enhanced by exogenous IL-12. In SJL/J and RAW264.7 macrophages, exogenous IL-6 resulted in decreased TMEV replication, earlier activation of STAT1 and STAT3, production of nitric oxide, and earlier upregulation of several antiviral genes downstream of STAT1. However, neither inhibition of IL-6-induced nitric oxide nor knockdown of STAT1 diminished the early antiviral effect of exogenous IL-6. In addition, neutralization of endogenous IL-6 from SJL/J macrophages with Fab antibodies did not exacerbate early TMEV infection. Therefore, endogenous IL-6 expression after TMEV infection is dependent on ERK MAPK, enhanced by IL-12, but too slow to decrease viral replication during early infection. In contrast, exogenous IL-6 enhances macrophage control of TMEV infection through preemptive antiviral nitric oxide production and antiviral STAT1 activation. These results indicate that immediate-early production of IL-6 could protect macrophages from TMEV infection.  相似文献   

9.
10.
11.
12.
IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with fixed, cytokine-stimulated T cells (Tck). Elutriated monocytes were differentiated to macrophages by macrophage-colony-stimulating factor (M-CSF) and co-cultured with fixed T cells chronically stimulated in a cytokine cocktail of IL-2/IL-6/tumour necrosis factor (TNF)-α in the presence or absence of wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase (PI3K), or of rapamycin, an inhibitor of p70 S6-kinase (p70S6K). Spontaneous IL-10 production by rheumatoid arthritis synovial-membrane mononuclear cells (RA-SMCs) and co-cultures of rheumatoid arthritis T cells (RA-Ts) and macrophages was also assessed. RA-T and Tck induction of macrophage IL-10 production was suppressed by cell separation and inhibition of PI3K and p70S6K. PI3K involvement was also shown by phosphorylation of the downstream effector protein kinase B. Spontaneous IL-10 production by RA-SMCs was also inhibited by LY294002 and depletion of the nonadherent (T-cell-enriched) fraction of the cell population. IL-10 production in RA-SMCs and M-CSF-primed macrophages, activated by interaction with Tck, is PI3K- and p70S6K-dependent.  相似文献   

13.
IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with fixed, cytokine-stimulated T cells (Tck). Elutriated monocytes were differentiated to macrophages by macrophage-colony-stimulating factor (M-CSF) and co-cultured with fixed T cells chronically stimulated in a cytokine cocktail of IL-2/IL-6/tumour necrosis factor (TNF)-alpha in the presence or absence of wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase (PI3K), or of rapamycin, an inhibitor of p70 S6-kinase (p70S6K). Spontaneous IL-10 production by rheumatoid arthritis synovial-membrane mononuclear cells (RA-SMCs) and co-cultures of rheumatoid arthritis T cells (RA-Ts) and macrophages was also assessed. RA-T and Tck induction of macrophage IL-10 production was suppressed by cell separation and inhibition of PI3K and p70S6K. PI3K involvement was also shown by phosphorylation of the downstream effector protein kinase B. Spontaneous IL-10 production by RA-SMCs was also inhibited by LY294002 and depletion of the nonadherent (T-cell-enriched) fraction of the cell population. IL-10 production in RA-SMCs and M-CSF-primed macrophages, activated by interaction with Tck, is PI3K- and p70S6K-dependent.  相似文献   

14.
Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG-ODNs) function as powerful immune adjuvants by activating macrophages, dendritic cells, and B cells. However, the molecular recognition mechanism that initiates signaling in response to CpG-ODN has not fully been identified. We show in this study that peritoneal macrophages from SCID mice having mutations in the catalytic subunit of DNA-protein kinase (DNA-PKcs) were almost completely defective in the production of IL-10 and in ERK activation when treated with CpG-ODN. In contrast, IL-12 p70 production significantly increased. Furthermore, small interfering RNA (siRNA)-mediated knockdown of DNA-PKcs expression in the mouse monocyte/macrophage cell line RAW264.7 led to reduced IL-10 production and ERK activation by CpG-ODN. IL-10 and IL-12 p70 production, but not ERK activation, are blocked by chloroquine, an inhibitor of endosomal acidification. Endosomal translocation of CpG-ODN in a complex with cationic liposomes consisting of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) (CpG-DOTAP-liposomes) decreased IL-10 production and ERK activation, whereas the endosomal escape of CpG-ODN in a complex with cationic liposomes consisting of DOTAP and dioleyl-phosphatidylethanolamine (DOPE) (CpG-DOTAP/DOPE-liposomes) increased. In contrast, IL-12 p70 production was increased by CpG-DOTAP-liposomes and decreased by CpG-DOTAP/DOPE-liposomes. IL-10 production induced by CpG-DOTAP/DOPE-liposomes was not observed in macrophages from SCID mice. Thus, our findings suggest that DNA-PKcs in the cytoplasm play an important role in CpG-ODN-induced production of IL-10 in macrophages. In addition, DNA-PKcs-mediated production of IL-10 and IL-12 p70 can be regulated by manipulating the intracellular trafficking of CpG-ODN in macrophages.  相似文献   

15.

Aims

Enalapril, an angiotensin-converting enzyme (ACE) inhibitor, has pleiotropic effects such as anti-inflammatory effects. This study investigated the effect of enalapril on the nuclear factor-kappa B (NF-κB) pathway and on experimental colitis.

Main methods

The human intestinal epithelial cell (IEC) line COLO 205 and peritoneal macrophages from C57BL/6 wild-type mice and IL-10-deficient (IL-10−/−) mice were prepared and subsequently stimulated with lipopolysaccharide (LPS) alone or LPS plus enalapril. The effect of enalapril on NF-κB signaling was examined by western blotting to detect IκBα phosphorylation/degradation; an electrophoretic mobility shift assay (EMSA) to assess the DNA binding activity of NF-κB; and ELISAs to qualify IL-8, TNF-α, IL-6, and IL-12 production. In in vivo studies, dextran sulfate sodium (DSS)-induced acute colitis in wild-type mice and chronic colitis in IL-10−/− mice were treated with or without enalapril. Colitis was quantified by histologic scoring, and the phosphorylation of IκBα in the colonic mucosa was assessed using immunohistochemistry.

Key findings

Enalapril significantly inhibited LPS-induced IκBα phosphorylation/degradation, NF-κB binding activity, and pro-inflammatory cytokine production in both IEC and peritoneal macrophages. The administration of enalapril significantly reduced the severity of colitis, as assessed based on histology in both murine colitis models. Furthermore, in colon tissue, the up-regulation of IκBα phosphorylation with colitis induction was attenuated in enalapril-treated mice.

Significance

Enalapril may block the NF-κB signaling pathway, inhibit the activation of IECs and macrophages, and attenuate experimental murine colitis by down-regulating IκBα phosphorylation. These findings suggest that enalapril is a potential therapeutic agent for inflammatory bowel disease.  相似文献   

16.
17.
Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.  相似文献   

18.
19.
IL-12, produced by APCs during the initial stages of an immune response, plays a pivotal role in the induction of IFN-gamma by NK and gammadeltaT cells and in driving the differentiation of Th1 cells, thus providing a critical link between innate and acquired immunity. Due to the unique position occupied by IL-12 in the regulation of immunity, many mechanisms have evolved to modulate IL-12 production. We have shown previously that macrophage-stimulating protein (MSP), the ligand for the stem cell-derived tyrosine kinase/recepteur d'origine nantais (RON) receptor, inhibits NO production by macrophages in response to IFN-gamma and enhances the expression of arginase. Mice lacking RON exhibit increased inflammation in a delayed-type hypersensitivity reaction and increased susceptibility to endotoxic shock. In this study we demonstrate that pretreatment of macrophages with MSP before IFN-gamma and LPS results in the complete inhibition of IL-12 production due to suppression of p40 expression. This response is mediated by the RON receptor, and splenocytes from RON(-/-) animals produce increased levels of IFN-gamma. MSP pretreatment of macrophages resulted in decreased tyrosine phosphorylation of Stat-1 and decreased expression of IFN consensus sequence binding protein in response to inflammatory cytokines. In addition to IL-12, the expression of IL-15 and IL-18, cytokines that are also dependent on IFN consensus sequence binding protein activation, is inhibited by pretreatment with MSP before IFN-gamma and LPS. We also show that the ability of MSP to inhibit IL-12 production is independent of IL-10. Taken together, these results suggest that MSP may actively suppress cell-mediated immune responses through its ability to down-regulate IL-12 production and thus inhibit classical activation of macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号