首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract Oikopleura dioica has two large subchordal cells which were studied in vivo and with light and electron microscopy. They have fixed positions within the haemocoel of the tail but change their morphology continually by protruding and withdrawing processes in an amoeboid manner. Also the fine structure varies considerably from one animal to the next. The cell surface sometimes indicates a strong pinocytotic activity with many coated pits and vesicles. In other cases there are many small vesicles which are interpreted as exocytotic. They are found both in the cytoplasm close to the plasma membrane and in the haemocoelic fluid. Subchordal cells with no pronounced surface activity have a large amount of rough endoplasmic reticulum, which suggests that they synthesize proteins. The presence of subchordal cells in the tail is correlated with the presence of the ontogenetically related bioluminescent oral gland cells in the pharynx; either both types exist simultaneously or both are lacking. It is speculated that the two cell types are also functionally co-ordinated. Oikopleura albicans has a multitude of tiny subchordal cells which have essentially the same fine structure as the two large Oikopleura dioica cells.  相似文献   

3.
4.
Thomas Stach 《Zoomorphology》2007,126(3):203-214
Appendicularians have always occupied a central role in considerations of tunicate and chordate evolution. Two hypotheses have been proposed – one holds that appendicularia represents the sister taxon to the remaining tunicates, the other suggests that appendicularians were derived from an ascidian-like ancestor. In the present study I report results from electron microscopic investigation of larval tunicates including the first electron microscopic investigation of the tail of the early ontogenetic appendicularian “Streckform” and discuss their phylogenetic implications. The early “Streckform” of Oikopleura dioica Fol, 1872 is invested with an extracellular covering that consists of an inner electron-light layer and an electron-dense outermost layer. In addition, the extracellular covering forms fin blades. Because these traits are shown to be similar to the tunic of different ascidian larvae, the extracellular covering in early appendicularian embryos is suggested to be homologous to the larval tunic of ascidian larvae. Overall, the tail of early developmental stages of appendicularians consists of a mosaic of apomorphic and plesiomorphic features. The straight, continuous endodermal strand was inherited from a common chordate ancestor whereas the finlets of larvae, consisting of extracellular material, were inherited from a common tunicate ancestor. The horizontal orientation of the tail as a whole was inherited from the last common ancestor of appendicularians and aplousobranch ascidians, and the discovered floating extension at the posterior tip of the tail is unique to the holoplanktonic Oikopleura dioica. These findings support the hypothesis that Appendicularia is derived from a sessile, ascidian-like ancestor.  相似文献   

5.
The appendicularian, Oikopleura dioica is a chordate. Its life cycle is extremely short—approximately 5 days—and its tadpole shape with a beating tail is retained throughout entire life. The tadpole hatches after 3 h of development at 20°C. Here, we describe the cleavage pattern and morphogenetic cell movements during gastrulation and neurulation. Cleavage showed an invariant pattern. It is basically bilateral but also shows various minor left–right asymmetries starting from the four-cell stage. We observed two rounds of unequal cleavage of the posterior-vegetal B-line cells at the posterior pole. The nature of the unequal cleavages is reminiscent of those in ascidian embryos and suggests the presence of a centrosome-attracting body, a special subcellular structure at the posterior pole. The representation of the cell division pattern in this report will aid the identification of each cell, a prerequisite for clarifying the gene expression patterns in early embryos. Gastrulation started as early as the 32-cell stage and progressed in three phases. By the end of the second phase at the 64-cell stage, every vegetal cell had ingressed into the embryo, and animal cells had covered the entire embryo by epiboly. There was no archenteron formation. In the anterior region, eight A-line cells were aligned as a 2 × 4 array along the anterior–posterior axis and become internalized during the 64-cell stage. This process was considered to correspond to neurulation. The simple and accelerated development of Oikopleura, nevertheless giving rise to a conserved chordate body plan, is advantageous for studying developmental mechanisms using molecular and genetic approaches and makes this animal the simplest model organism in the phylum Chordata. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
We present evidence that notochord and muscle differentiation are crucial for morphogenesis of the ascidian tail. We developed a novel approach for embryological manipulation of the developing larval tissues using a simple method to introduce DNA into Ciona intestinalis and the several available tissue-specific promoters. With such promoters, we misexpressed the Xenopus homeobox gene bix in notochord or muscle of Ciona embryos as a means of interfering with development of these tissues. Ciona embryos expressing bix in the notochord from the 64-cell stage develop into larvae with very short tails, in which the notochord precursors fail to intercalate and differentiate. Larvae with mosaic expression of bix have intermediate phenotypes, in which a partial notochord is formed by the precursor cells that did not receive the transgene while the precursors that express the transgene cluster together and fail to undergo any of the cell-shape changes associated with notochord differentiation. Muscle cells adjacent to differentiated notochord cells are properly patterned, while those next to the notochord precursor cells transformed by bix exhibit various patterning defects. In these embryos, the neural tube extends in the tail to form a nerve cord, while the endodermal strand fails to enter the tail region. Similarly, expression of bix in muscle progenitors impairs differentiation of muscle cells, and as a result, notochord cells fail to undergo normal extension movements. Hence, these larvae have a shorter tail, due to a block in the elongation of the notochord. Taken together, these observations suggest that tail formation in ascidian larvae requires not only signaling from notochord to muscle cells, but also a "retrograde" signal from muscle cells to notochord.  相似文献   

8.
Stach, T. and Kaul, S. 2011. The postanal tail of the enteropneust Saccoglossus kowalevskii is a ciliary creeping organ without distinct similarities to the chordate tail. —Acta Zoologica (Stockholm) 92 : 150–160. The postanal tail of chordates is one of the key characters in chordate evolution and it has been suggested to be homologous to the postanal tail of harrimaniid enteropneusts. We present electron microscopic data of the ontogeny of the postanal tail in the enteropneust Saccoglossus kowalevskii. The postanal tail develops as a ventral posterior allometric outgrowth with a ventral extension of the telotroch. Transmission electron microscopy of serial sections reveals the epidermal organization of the postanal tail with the exception of short, bilaterally symmetric extensions of the paired metacoels. The epidermis cells are connected by apical junctions, rest basally on the extracellular matrix surrounding the mesoderm, and possess a basiepidermal nerve net. The ventral cells in the postanal tail are multiciliated and used for creeping. Dorsal cells are monociliated with numerous microvilli. Two types of glandular cells are present among the epidermis cells. The mesoderm cells contain myofilaments. We were unable to detect anatomical structures similar to the ones present in the postanal locomotory tail of chordates, such as notochord, neural tube, or endodermal strand. Thus, results of our anatomical study do not support homology of the postanal chordate tail and the postanal tail of harrimaniid enteropneusts.  相似文献   

9.
SUMMARY Contrasting hypotheses have been proposed to explain the pervasive parallels in the patterning of arthropod and vertebrate appendages. These hypotheses either call for a common ancestor already provided with patterned appendages or body outgrowths, or for the recruitment in limb patterning of single genes or genetic cassettes originally used for purposes other than axis patterning. I suggest instead that body appendages such as arthropod and vertebrate limbs and chordate tails are evolutionarily divergent duplicates (paramorphs) of the main body axis, that is, its duplicates, albeit devoid of endodermal component. Thus, vertebrate limbs and arthropod limbs are not historical homologs, but homoplastic features only transitively related to real historical homologs. Thus, the main body axis and the axis of the appendages have distinct but not independent evolutionary histories and may be involved in processes of homeotic co-option producing effects of morphological assimilation. For instance, chordate segmentation may have originated in the posterior appendage (tail) and subsequently extended to the trunk.  相似文献   

10.
11.
The Brachyury, or T, gene is required for notochord development in animals occupying all three chordate subphyla and probably also had this role in the last common ancestor of the chordate lineages. In two chordate subphyla (vertebrates and cephalochordates), T is also expressed during gastrulation in involuting endodermal and mesodermal cells, and in vertebrates at least, this expression domain is required for proper development. In the basally diverging chordate subphylum Urochordata, animals in the class Ascidiacea do not employ T during gastrulation in endodermal or nonaxial mesodermal cells, and it has been suggested that nonnotochordal roles for T were acquired in the cephalochordate-vertebrate lineage after it split with Urochordata. To test this hypothesis, we cloned T from Oikopleura dioica, a member of the urochordate class Appendicularia (or Larvacea), which diverged basally in the subphylum. Investigation of the expression pattern in developing Oikopleura embryos showed early expression in presumptive notochord precursor cells, in the notochord, and in parts of the developing gut and cells of the endodermal strand. We conclude that the ancestral role of T likely included expression in the developing gut and became necessary in chordates for construction of the notochord.  相似文献   

12.
The Brachyury, or T, gene is required for notochord development in animals occupying all three chordate subphyla and probably also had this role in the last common ancestor of the chordate lineages. In two chordate subphyla (vertebrates and cephalochordates), T is also expressed during gastrulation in involuting endodermal and mesodermal cells, and in vertebrates at least, this expression domain is required for proper development. In the basally diverging chordate subphylum Urochordata, animals in the class Ascidiacea do not employ T during gastrulation in endodermal or nonaxial mesodermal cells, and it has been suggested that nonnotochordal roles for T were acquired in the cephalochordate–vertebrate lineage after it split with Urochordata. To test this hypothesis, we cloned T from Oikopleura dioica, a member of the urochordate class Appendicularia (or Larvacea), which diverged basally in the subphylum. Investigation of the expression pattern in developing Oikopleura embryos showed early expression in presumptive notochord precursor cells, in the notochord, and in parts of the developing gut and cells of the endodermal strand. We conclude that the ancestral role of T likely included expression in the developing gut and became necessary in chordates for construction of the notochord.  相似文献   

13.
14.
Ascidians have served as an appropriate experimental system in developmental biology for more than a century. The fertilized egg develops quickly into a tadpole larva, which consists of a small number of organs including epidermis, central nervous system with two sensory organs, endoderm and mesenchyme in the trunk, and notochord and muscle in the tail. This configuration of the ascidian tadpole is thought to represent the most simplified and primitive chordate body plan. Their embryogenesis is simple, and lineage of embryonic cells is well documented. The ascidian genome contains a basic set of genes with less redundancy compared to the vertebrate genome. Cloning and characterization of developmental genes indicate that each gene is expressed under discrete spatio-temporal pattern within their lineage. In addition, the use of various molecular techniques in the ascidian embryo system highlights its advantages as a future experimental system to explore the molecular mechanisms underlying the expression and function of developmental genes as well as genetic circuitry responsible for the establishment of the basic chordate body plan. This review is aimed to highlight the recent advances in ascidian embryology.  相似文献   

15.
Neural crest-like cells (NCLC) that express the HNK-1 antigen and form body pigment cells were previously identified in diverse ascidian species. Here we investigate the embryonic origin, migratory activity, and neural crest related gene expression patterns of NCLC in the ascidian Ciona intestinalis. HNK-1 expression first appeared at about the time of larval hatching in dorsal cells of the posterior trunk. In swimming tadpoles, HNK-1 positive cells began to migrate, and after metamorphosis they were localized in the oral and atrial siphons, branchial gill slits, endostyle, and gut. Cleavage arrest experiments showed that NCLC are derived from the A7.6 cells, the precursors of trunk lateral cells (TLC), one of the three types of migratory mesenchymal cells in ascidian embryos. In cleavage arrested embryos, HNK-1 positive TLC were present on the lateral margins of the neural plate and later became localized adjacent to the posterior sensory vesicle, a staging zone for their migration after larval hatching. The Ciona orthologues of seven of sixteen genes that function in the vertebrate neural crest gene regulatory network are expressed in the A7.6/TLC lineage. The vertebrate counterparts of these genes function downstream of neural plate border specification in the regulatory network leading to neural crest development. The results suggest that NCLC and neural crest cells may be homologous cell types originating in the common ancestor of tunicates and vertebrates and support the possibility that a putative regulatory network governing NCLC development was co-opted to produce neural crest cells during vertebrate evolution.  相似文献   

16.
The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration.  相似文献   

17.
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.  相似文献   

18.
The border cells of Drosophila are a model system for coordinated cell migration. Ecdysone signaling has been shown to act as the timing signal to initiate the migration process. Here we find that mutations in phantom (phm), encoding an enzyme in the ecdysone biosynthesis pathway, block border cell migration when the entire follicular epithelium of an egg chamber is mutant, even when the associated germline cells (nurse cells and oocyte) are wild-type. Conversely, mutant germline cells survive and do not affect border cell migration, as long as the surrounding follicle cells are wild-type. Interestingly, even small patches of wild-type follicle cells in a mosaic epithelium are sufficient to allow the production of above-threshold levels of ecdysone to promote border cell migration. The same phenotype is observed with mutations in shade (shd), encoding the last enzyme in the pathway that converts ecdysone to the active 20-hydroxyecdysone. Administration of high 20-hydroxyecdysone titers in the medium can also rescue the border cell migration phenotype in cultured egg chambers with an entirely phm mutant follicular epithelium. These results indicate that in normal oogenesis, the follicle cell epithelium of each individual egg chamber must supply sufficient ecdysone precursors, leading ultimately to high enough levels of mature 20-hydroxyecdysone to the border cells to initiate their migration. Neither the germline, nor the neighboring egg chambers, nor the surrounding hemolymph appear to provide threshold amounts of 20-hydroxyecdysone to do so. This “egg chamber autonomous” ecdysone synthesis constitutes a useful way to regulate the individual maturation of the asynchronous egg chambers present in the Drosophila ovary.  相似文献   

19.
The trunk and tail mesoderm of hatchling chaetognaths consists of a simple myoepithelium containing four stereotypically arranged cell types, each matching in position a specific adult tissue. The trunk mesoderm includes lateral cells, longitudinal muscle cells, dorsal and ventral medial cells, and peri-intestinal cells. These correspond, respectively, to the lateral fields, longitudinal body wall muscles, dorsal and ventral perimysial cells, and periintestinal muscles of adults. Because the developing intestine does not extend into the tail, tail cells equivalent in position to peri-intestinal cells in the trunk are designated mesenterial cells. Numerous small spaces situated among the apices of hatchling mesodermal cells have the same position relative to surrounding cells as both the coelomic cavities of early embryos and the adult body cavities. We infer that these spaces in hatchlings expand and coalesce to form the definitive adult body cavities, and that these spaces and the adult body cavities derive from the embryonic coeloms. Because hatchlings lack mesenchymal mesoderm, we infer that all adult mesodermal tissues develop by elaboration of the coelomic lining of hatchlings. Because hatchlings lack cells corresponding to the squamous peritoneocytes overlying the body wall muscles of adults, we conclude that peritoneocytes are specialized adult cells that are not equivalent to cells of the embryonic coelomic lining. Finally, hatchlings contain a complete trunk/tail septum. This observation contradicts reports that this septum forms several days after hatching. It also weakens arguments that chaetognaths are bimeric rather than trimeric. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Rap1 is a key regulator of cell adhesion and cell motility in Dictyostelium. Here, we identify a Rap1-specific GAP protein (RapGAP3) and provide evidence that Rap1 signaling regulates cell-cell adhesion and cell migration within the multicellular organism. RapGAP3 mediates the deactivation of Rap1 at the late mound stage of development and plays an important role in regulating cell sorting during apical tip formation, when the anterior-posterior axis of the organism is formed, by controlling cell-cell adhesion and cell migration. The loss of RapGAP3 results in a severely altered morphogenesis of the multicellular organism at the late mound stage. Direct measurement of cell motility within the mound shows that rapGAP3 cells have a reduced speed of movement and, compared to wild-type cells, have a reduced motility towards the apex. rapGAP3 cells exhibit some increased EDTA/EGTA sensitive cell-cell adhesion at the late mound stage. RapGAP3 transiently and rapidly translocates to the cell cortex in response to chemoattractant stimulation, which is dependent on F-actin polymerization. We suggest that the altered morphogenesis and the cell-sorting defect of rapGAP3 cells may result in reduced directional movement of the mutant cells to the apex of the mound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号