首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis, storage, and turnover of triacylglycerols (TAGs) in adipocytes are critical cellular processes to maintain lipid and energy homeostasis in mammals. TAGs are stored in metabolically highly dynamic lipid droplets (LDs), which are believed to undergo fragmentation and fusion under lipolytic and lipogenic conditions, respectively. Time lapse fluorescence microscopy showed that stimulation of lipolysis in 3T3-L1 adipocytes causes progressive shrinkage and almost complete degradation of all cellular LDs but without any detectable fragmentation into micro-LDs (mLDs). However, mLDs were rapidly formed after induction of lipolysis in the absence of BSA in the culture medium that acts as a fatty acid scavenger. Moreover, mLD formation was blocked by the acyl-CoA synthetase inhibitor triacsin C, implicating that mLDs are synthesized de novo in response to cellular fatty acid overload. Using label-free coherent anti-Stokes Raman scattering microscopy, we demonstrate that LDs grow by transfer of lipids from one organelle to another. Notably, this lipid transfer between closely associated LDs is not a rapid and spontaneous process but rather occurs over several h and does not appear to require physical interaction over large LD surface areas. These data indicate that LD growth is a highly regulated process leading to the heterogeneous LD size distribution within and between individual cells. Our findings suggest that lipolysis and lipogenesis occur in parallel in a cell to prevent cellular fatty acid overflow. Furthermore, we propose that formation of large LDs requires a yet uncharacterized protein machinery mediating LD interaction and lipid transfer.  相似文献   

2.
The 3T3-L1 cell line, derived from 3T3 cells, is widely used in biological research on adipose tissue. 3T3-L1 cells have a fibroblast-like morphology, but, under appropriate conditions, they differentiate into an adipocyte-like phenotype. During the differentiation process, 3T3-L1 cells increase the synthesis of triglycerides and acquire the behavior of adipose cells. In particular, triglycerides accumulate in lipid droplets (LDs) embedded in the cytoplasm. The number and the size distribution of the LDs is often correlated with obesity and many other pathologies linked with fat accumulation. The integrated optical density (IOD) of the LDs is related with the amount of triglycerides in the droplets. The aim of this study is the attempt to characterize the size distribution and the IOD of the LDs in 3T3-L1 differentiated cells. The cells were differentiated into adipocytes for 5 days with a standard procedure, stained with Oil Red O and observed with an optical microscope. The diameter, area, optical density of the LDs were measured. We found an asymmetry of the kernel density distribution of the maximum Feret’s diameter of the LDs with a tail due to very large LDs. More information regarding the birth of the LDs could help in finding the best mathematical model in order to analyze fat accumulation in adipocytes.Key words: Lipid droplet, 3T3-L1, adipocyte, fat, triglyceride accumulation, integrated optical density  相似文献   

3.
Lipid droplets (LDs) are dynamic cellular organelles that control many biological processes. However, molecular components determining LD growth are poorly understood. Genetic analysis has indicated that Fsp27, an LD-associated protein, is important in controlling LD size and lipid storage in adipocytes. In this paper, we demonstrate that Fsp27 is focally enriched at the LD-LD contacting site (LDCS). Photobleaching revealed the occurrence of lipid exchange between contacted LDs in wild-type adipocytes and Fsp27-overexpressing cells but not Fsp27-deficient adipocytes. Furthermore, live-cell imaging revealed a unique Fsp27-mediated LD growth process involving a directional net lipid transfer from the smaller to larger LDs at LDCSs, which is in accordance with the biophysical analysis of the internal pressure difference between the contacting LD pair. Thus, we have uncovered a novel molecular mechanism of LD growth mediated by Fsp27.  相似文献   

4.
Murphy S  Martin S  Parton RG 《PloS one》2010,5(12):e15030
Lipid droplets (LDs) are dynamic cytoplasmic organelles containing neutral lipids and bounded by a phospholipid monolayer. Previous studies have suggested that LDs can undergo constitutive homotypic fusion, a process linked to the inhibitory effects of fatty acids on glucose transporter trafficking. Using strict quantitative criteria for LD fusion together with refined light microscopic methods and real-time analysis, we now show that LDs in diverse cell types show low constitutive fusogenic activity under normal growth conditions. To investigate the possible modulation of LD fusion, we screened for agents that can trigger fusion. A number of pharmacological agents caused homotypic fusion of lipid droplets in a variety of cell types. This provided a novel cell system to study rapid regulated fusion between homotypic phospholipid monolayers. LD fusion involved an initial step in which the two adjacent membranes became continuous (<10 s), followed by the slower merging (100 s) of the neutral lipid cores to produce a single spherical LD. These fusion events were accompanied by changes to the LD surface organization. Measurements of LDs undergoing homotypic fusion showed that fused LDs maintained their initial volume, with a corresponding decrease in surface area suggesting rapid removal of membrane from the fused LD. This study provides estimates for the level of constitutive LD fusion in cells and questions the role of LD fusion in vivo. In addition, it highlights the extent of LD restructuring which occurs when homotypic LD fusion is triggered in a variety of cell types.  相似文献   

5.
Despite the lipolysis-lipogenesis cycle being a fundamental process in adipocyte biology, very little is known about the morphological changes that occur during this process. The remodeling of lipid droplets to form micro lipid droplets (mLDs) is a striking feature of lipolysis in adipocytes, but once lipolysis ceases, the cell must regain its basal morphology. We characterized mLD formation in cultured adipocytes, and in primary adipocytes isolated from mouse epididymal fat pads, in response to acute activation of lipolysis. Using real-time quantitative imaging and electron tomography, we show that formation of mLDs in cultured adipocytes occurs throughout the cell to increase total LD surface area by ~30% but does not involve detectable fission from large LDs. Peripheral mLDs are monolayered structures with a neutral lipid core and are sites of active lipolysis. Electron tomography reveals preferential association of mLDs with the endoplasmic reticulum. Treatment with insulin and fatty acids results in the reformation of macroLDs and return to the basal state. Insulin-dependent reformation of large LDs involves two distinct processes: microtubule-dependent homotypic fusion of mLDs and expansion of individual mLDs. We identify a physiologically important role for LD fusion that is involved in a reversible lipolytic cycle in adipocytes.  相似文献   

6.
Lipid droplets (LDs) are fat-storing organelles present in virtually all eukaryotic cells and involved in many aspects of cell biology related to lipid metabolism and cholesterol homeostasis. In this study, we investigated the presence of LDs in proliferating and quiescent (contact-inhibited) 3T3 fibroblasts to verify a correlation with cell growth. LDs were characterized by Nile red staining, positivity to adipophilin and negativity to perilipin. LDs were numerous in proliferating cells, but very few in quiescent cells. However, the fraction of quiescent cells, which resumed proliferation after scratch-wound assay, also resumed the formation of LDs. In proliferating cells, the number of LDs correlated with the DNA content, suggesting a continuous accumulation of LDs during cell growth. These findings were supported by biochemical data showing much higher rates of cholesterol esterification and triglyceride synthesis in proliferating cells. Both filipin staining and the fluorescent cholesterol analog dehydroergosterol revealed the presence of an intense traffic of free cholesterol, mediated by acidic vesicles, in proliferating cells. Nile red ratiometric measurements revealed a different lipid composition of LDs in proliferating and quiescent cells. Changes in the number and composition of LDs were also found in growing cells treated with inhibitors of cholesterol esterification (Sandoz 58-035), endosomal cholesterol efflux (U18666A) and V-ATPase (bafilomycin-A1).  相似文献   

7.
During the adipogenic differentiation process of mesenchymal stem cells, lipid droplets (LDs) grow slowly by transferring lipids between each other. Recent findings hint at the possibility that a fusion pore is involved. In this study, we analyze lipid transfer data obtained in long-term label-free microscopy studies in the framework of a Hagen-Poiseuille model. The data obtained show a LD fusion process in which the lipid transfer directionality depends on the size difference between LDs, whereas the respective rates depend on the size difference and additionally on the diameter of the smaller LDs. For the data analysis, the viscosity of the transferred material has to be known. We demonstrate that a viscosity-dependent molecular rotor dye can be used to measure LD viscosities in live cells. On this basis, we calculate the diameter of a putative lipid transfer channel which appears to have a direct dependence on the diameter of the smaller of the two participating LDs.  相似文献   

8.
Jambunathan S  Yin J  Khan W  Tamori Y  Puri V 《PloS one》2011,6(12):e28614
Fat Specific Protein 27 (FSP27), a lipid droplet (LD) associated protein in adipocytes, regulates triglyceride (TG) storage. In the present study we demonstrate that FSP27 plays a key role in LD morphology to accumulate TGs. We show here that FSP27 promotes clustering of the LDs which is followed by their fusion into fewer and enlarged droplets. To map the domains of FSP27 responsible for these events, we generated GFP-fusion constructs of deletion mutants of FSP27. Microscopic analysis revealed that amino acids 173-220 of FSP27 are necessary and sufficient for both the targeting of FSP27 to LDs and the initial clustering of the droplets. Amino acids 120-140 are essential but not sufficient for LD enlargement, whereas amino acids 120-210 are necessary and sufficient for both clustering and fusion of LDs to form enlarged droplets. In addition, we found that FSP27-mediated enlargement of LDs, but not their clustering, is associated with triglyceride accumulation. These results suggest a model in which FSP27 facilitates LD clustering and then promotes their fusion to form enlarged droplets in two discrete, sequential steps, and a subsequent triglyceride accumulation.  相似文献   

9.
Lipid droplets (LDs) are dynamic subcellular organelles whose growth is closely linked to obesity and hepatic steatosis. Cell death-inducing DNA fragmentation factor-α-like effector (CIDE) proteins, including Cidea, Cideb, and Cidec (also called Fsp27), play important roles in lipid metabolism. Cidea and Cidec are LD-associated proteins that promote atypical LD fusion in adipocytes. Here, we find that CIDE proteins are all localized to LD-LD contact sites (LDCSs) and promote lipid transfer, LD fusion, and growth in hepatocytes. We have identified two types of hepatocytes, one with small LDs (small LD-containing hepatocytes, SLHs) and one with large LDs (large LD-containing hepatocytes, LLHs) in the liver. Cideb is localized to LDCSs and promotes lipid exchange and LD fusion in both SLHs and LLHs, whereas Cidea and Cidec are specifically localized to the LDCSs and promote lipid exchange and LD fusion in LLHs. Cideb-deficient SLHs have reduced LD sizes and lower lipid exchange activities. Fasting dramatically induces the expression of Cidea/Cidec and increases the percentage of LLHs in the liver. The majority of the hepatocytes from the liver of obese mice are Cidea/Cidec-positive LLHs. Knocking down Cidea or Cidec significantly reduced lipid storage in the livers of obese animals. Our data reveal that CIDE proteins play differential roles in promoting LD fusion and lipid storage; Cideb promotes lipid storage under normal diet conditions, whereas Cidea and Cidec are responsible for liver steatosis under fasting and obese conditions.  相似文献   

10.
Time-lapse observation of adipocytes during catecholamine-induced lipolysis clearly shows that shrinking of existing lipid droplets (LDs) occurs in some adipocytes and that small LDs are newly developed in almost all cells. Immunofluorescence imaging reveals that activation and localization of hormone-sensitive lipase (HSL) on the surface of LDs, which are required for conferring maximal lipolysis, are necessary for the shrinking of the LDs. However, not all adipocytes in which phosphorylated HSL is localized on LDs exhibit shrinking of LDs. The simultaneous shrinking and development of LDs yield apparent fragmentation and dispersion of LDs in adipocytes stimulated with catecholamine.  相似文献   

11.
目的:Fsp27已经被证明定位在脂滴上并且介导脂滴融合与增大。为研究Fsp27介导脂滴融合的动态分子机制,我们构建了Fsp27-mMaple3和Fsp27-mEos3.2两种新型荧光探针的融合蛋白并研究其对脂滴融合的功能影响,进而为研发Fsp27相关生理功能的光学显像技术奠定基础。方法:对照传统绿色荧光的融合蛋白Fsp27-EGFP,在共聚焦显微镜下观察Fsp27-mMaple3和Fsp27-mEos3.2两种新型融合蛋白的亚细胞定位和介导脂滴融合的功能,并利用荧光漂白恢复术(fluorescence recovery after photo-bleaching,FRAP)以判断脂滴与脂滴之间是否存在脂的交换。结果:表达Fsp27-mMaple3和Fsp27-mEos3.2两种新型融合蛋白的细胞中脂滴显著增大;同时,融合蛋白皆集中在脂滴与脂滴的接触位点上,且中性脂的交换实验显示脂滴与脂滴之间可以相互连通。结论:我们建构的两种新型荧光探针融合蛋白Fsp27-mMaple3和Fsp27-mEos3.2保持了Fsp27介导脂滴融合的功能,并为我们进一步研发新型的超分辨光学显像技术提供功能基础。  相似文献   

12.
Recent advances have transformed our understanding of lipid droplets (LDs). Once regarded as inert lipid storage granules, LDs are now recognized as multi-functional organelles that affect many aspects of cell biology and metabolism. However, fundamental questions concerning the biogenesis and growth of LDs remain unanswered. Recent studies have uncovered novel modes of LD growth (including rapid/homotypic as well as slow/atypical LD fusion), and identified key proteins (e.g. Fsp27, seipin, FITM2 and perilipin 1) and lipids (e.g. phosphatidylcholine and phosphatidic acid) that regulate the size of LDs. Phospholipids appear to have an evolutionarily conserved role in LD growth. Protein factors may regulate LD expansion directly and/or indirectly through modulating the level and composition of phospholipids on LD surface.  相似文献   

13.
ACSL3 is the only long chain fatty acyl-CoA synthetase consistently found on growing and mature lipid droplets (LDs), suggesting that this specific localization has biological relevance. Current models for LD growth propose that triglycerides are synthesized by enzymes at the LD surface, with activated fatty acids provided by LD localized ACSL3, thus allowing growth independent of the ER. Here, we tested this hypothesis by quantifying ACSL3 on LDs from human A431 cells.RNAi of ACSL3 reduced the oleoyl-CoA synthetase activity by 83%, suggesting that ACSL3 is by far the dominant enzyme of A431 cells. Molar quantification revealed that there are 1.4 million ACSL3 molecules within a single cell. Metabolic labeling indicated that each ACSL3 molecule contributed a net gain of 3.1 oleoyl-CoA/s. 3D reconstruction of confocal images demonstrated that 530 individual lipid droplets were present in an average oleate fed A431 cell. A representative single lipid droplet with a diameter of 0.66?μm contained 680 ACSL3 molecules on the surface. Subcellular fractionation showed that at least 68% of ACSL3 remain at the ER even during extensive fatty acid supplementation. High resolution single molecule microscopy confirmed the abundance of cytoplasmic ACSL3 outside of LDs. Model calculations for triglyceride synthesis using only LD localized ACSL3 gave significant slower growth of LDs as observed experimentally.In conclusion, although ACSL3 is an abundant enzyme on A431 LDs, the metabolic capacity is not sufficient to account for LD growth solely by the local synthesis of triglycerides.  相似文献   

14.
Adipocyte fate commitment is characterized by morphological changes of fibroblastic pre-adipocyte cells, and specifically by accumulation of lipid droplets (LDs) as part of the adipogenesis metabolism. Formation of LDs indicates the production of triglycerides from glucose through an insulin-regulated glucose internalization process. In obesity, adipocytes typically become insulin resistant, and glucose transport into the cells is impaired, resulting in type 2 diabetes. In the present study, we monitored the adipogenesis in 3T3-L1 cultured cells exposed to high (450 mg/dL hyperglycemia) and low (100 mg/dL physiological) glucose concentrations, in a novel cell culture model system of diabesity. In addition to glucose conditions, cells were concurrently exposed to different substrate tensile strains (12% and control) based on our prior work which revealed that adipogenesis is accelerated in cultures subjected to static, chronic substrate tensile deformations. Phase-contrast images were taken throughout the adipogenesis process (3 weeks) and were analyzed by an image processing algorithm which quantitatively monitors cell differentiation and lipid accumulation (number of LDs per cell and their radius as well as cell size and shape). The results indicated that high glucose concentrations and substrate tensile strains delivered to adipocytes accelerated lipid production by 1.7- and 1.4-fold, respectively. In addition, significant changes in average cell projected area and in other morphological attributes were observed during the differentiation process. The importance of this study is in characterizing the adipogenesis parameters as potential read-outs that can predict the occurrence of insulin resistance in the development of diabesity.  相似文献   

15.
Lipid droplets (LDs) are ubiquitous in eukaryotic cells, while excess free fatty acids and glucose in plasma are converted to triacylglycerol (TAG) and stored as LDs. However, the mechanism for the generation and growth of LDs in cells is largely unknown. We show here that the LC3 lipidation system essential for macroautophagy is involved in LD formation. LD formation accompanied by accumulation of TAG induced by starvation was largely suppressed in the hepatocytes that cannot execute autophagy. Under starvation conditions, LDs in addition to autophagosomes were abundantly formed in the cytoplasm of these tissue cells. Moreover, LC3 was localized on the surface of LDs and LC3-II (lipidation form) was fractionated to a perilipin (LD marker)-positive lipid fraction from the starved liver. Taken together, these results indicate that the LC3 conjugation system is critically involved in lipid metabolism via LD formation.  相似文献   

16.
Dysregulation of lipid homeostasis leads to the development of metabolic disorders including obesity, diabetes, cardiovascular disease and cancer. Lipid droplets (LDs) are subcellular organelles vital in the maintenance of lipid homeostasis by coordinating lipid synthesis, lipid storage, lipid secretion and lipolysis. Under fed condition, free fatty acids (FFAs) are remodeled and esterified into neutral lipids by lipogenesis and stored in the LDs. The lipid storage capacity of LDs is controlled by its growth via local lipid synthesis or by LD fusion. During fasting, neutral lipids are hydrolyzed by lipolysis, released as FFAs and secreted to meet energy demand. C ell death‐i nducing D NA fragmentation factor alpha (DFFA)‐like e ffector (CIDE) family proteins composed of Cidea, Cideb and Cidec/Fsp27 are ER‐ and LD‐associated proteins and have emerged as important regulators of lipid homeostasis. Notably, when localized on the LDs, CIDE proteins enrich at the LD‐LD contact sites (LDCSs) and control LD fusion and growth. Here, we summarize these recent advances made on the role of CIDE proteins in the regulation of lipid metabolism with a particular focus on the molecular mechanisms underlying CIDE‐mediated LD fusion and growth.  相似文献   

17.
Lipid droplets (LDs) form from the endoplasmic reticulum (ER) and grow in size by obtaining triacylglycerols (TG). Triacylglycerol hydrolase (TGH), a lipase residing in the ER, is involved in the mobilization of TG stored in LDs for the secretion of very-low-density lipoproteins. In this study, we investigated TGH-mediated changes in cytosolic LD dynamics. We have found that TGH deficiency resulted in decreased size and increased number of LDs in hepatocytes. Using fluorescent fatty acid analogues to trace LD formation, we observed that TGH deficiency did not affect the formation of nascent LDs on the ER. However, the rate of lipid transfer into preformed LDs was significantly slower in the absence of TGH. Absence of TGH expression resulted in increased levels of membrane diacylglycerol and augmented phospholipid synthesis, which may be responsible for the delayed lipid transfer. Therefore, altered maturation (growth) rather than nascent formation (de novo synthesis) may be responsible for the observed morphological changes of LDs in TGH-deficient hepatocytes.  相似文献   

18.
The lipid droplet (LD) is an organelle with a lipid ester core and a surface phospholipid monolayer. The mechanism of LD biogenesis is not well understood. The present study aimed to elucidate the LD growth process, for which we developed a new electron microscopic method that quantifies the proportion of existing and newly synthesized triglycerides in individual LDs. Our method takes advantage of the reactivity of unsaturated fatty acids and osmium tetroxide, which imparts LDs an electron density that reflects fatty acid composition. With this method, existing triglyceride-rich LDs in 3Y1 fibroblasts were observed to incorporate newly synthesized triglycerides at a highly uniform rate. This uniformity and its persistence even after microtubules were depolymerized suggest that triglycerides in fibroblasts are synthesized in the local vicinity of individual LDs and then incorporated. In contrast, LDs in 3T3-L1 adipocytes showed heterogeneity in the rate at which lipid esters were incorporated, indicating different mechanisms of LD growth in fibroblasts and adipocytes.  相似文献   

19.
Lipid droplets (LDs) are key cellular organelles involved in lipid storage and mobilisation. While the major signalling cascades and many of the regulators of lipolysis have been identified, the cellular interactions involved in lipid mobilisation and release remain largely undefined. In non-adipocytes, LDs are small, mobile and interact with other cellular compartments. In contrast, adipocytes primarily contain very large, immotile LDs. The striking morphological differences between LDs in adipocytes and non-adipocytes suggest that key differences must exist in the manner in which LDs in different cell types interact with other organelles. Recent studies have highlighted the complexity of LD interactions, which can be both homotypic, with each other, and heterotypic, with other organelles. The molecules involved in these interactions are also now emerging, including Rab proteins, key regulators of membrane traffic, and caveolin, an integral membrane protein providing a functional link between the cell surface and LDs. Here we summarise recent insights into the cell biology of the LD particularly focussing on the homotypic and heterotypic interactions in both adipocytes and non-adipocytes. We speculate that these interactions may involve inter-organelle membrane contact sites or a hemi-fusion type mechanism to facilitate lipid transfer.  相似文献   

20.
Rab GTPases are crucial regulators of membrane traffic. Here we have examined a possible association of Rab proteins with lipid droplets (LDs), neutral lipid-containing organelles surrounded by a phospholipid monolayer, also known as lipid bodies, which have been traditionally considered relatively inert storage organelles. Although we found close apposition between LDs and endosomal compartments labeled by expressed Rab5, Rab7, or Rab11 constructs, there was no detectable labeling of the LD surface itself by these Rab proteins. In contrast, GFP-Rab18 localized to LDs and immunoelectron microscopy showed direct association with the monolayer surface. Green fluorescent protein (GFP)-Rab18-labeled LDs underwent oscillatory movements in a localized area as well as sporadic, rapid, saltatory movements both in the periphery of the cell and toward the perinuclear region. In both adipocytes and non-adipocyte cell lines Rab18 localized to a subset of LDs. To gain insights into this specific localization, Rab18 was co-expressed with Cav3DGV, a truncation mutant of caveolin-3 shown to inhibit the catabolism and motility of lipid droplets. GFP-Rab18 and mRFP-Cav3DGV labeled mutually exclusive subpopulations of LDs. Moreover, in 3T3-L1 adipocytes, stimulation of lipolysis increased the localization of Rab18 to LDs, an effect reversed by beta-adrenergic antagonists. These results show that a Rab protein localizes directly to the monolayer surface of LDs. In addition, association with the LD surface was increased following stimulation of lipolysis and inhibited by a caveolin mutant suggesting that recruitment of Rab18 is regulated by the metabolic state of individual LDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号