首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jak2 is a member of the Janus family of tyrosine kinases and is involved in cytokine signaling. As a part of a study to determine biological functions of Jak2, we used molecular modeling to identify W1038 as a residue that is critical for tyrosine kinase function. Mutation of W1038, in tandem with E1046, generates a dominant-negative form of the Jak2 protein. Mice that were engineered to express two copies of this dominant-negative Jak2 protein died in utero. Additionally, heterozygous mice expressing Jak2 with kinase activity that is moderately reduced when compared to wild-type activity appear phenotypically normal. Collectively, these data suggest that Jak2 kinase activity is essential for normal mammalian development.  相似文献   

2.
DDR1 signaling is essential to sustain Stat5 function during lactogenesis   总被引:1,自引:0,他引:1  
Postnatal development of the mammary gland is achieved by an interplay of endocrine and extracellular matrix-derived signals. Despite intense research, a comprehensive understanding of the temporal and spatial coordination of these hormonal and basement membrane stimuli is still lacking. Here, we address the role of the collagen-receptor DDR1 in integrating extracellular matrix-derived signaling with the lactogenic pathway initiated by the prolactin receptor. We found that stimulation of DDR1-overexpressing mammary epithelial HC11 cells with collagen and prolactin resulted in stronger and more sustained induction of Stat5 phosphorylation as compared to control cells. Enhanced Stat5 activity in HC11-DDR1 cells correlated with increased beta-casein gene expression. In contrast, cells derived from DDR1-null mice showed reduced Stat5 activation upon lactogenic stimulation and completely failed to induce beta-casein expression. The cell-autonomous role of DDR1 in controlling ductal branching and alveologenesis prior to the onset of lactogenesis was corroborated by mammary tissue transplantation experiments. Our results show that aside from hormone- and cytokine receptors, DDR1 signaling establishes a third matrix-derived pathway vital to maintain mammary gland function.  相似文献   

3.
The receptor tyrosine kinase c-Kit is expressed in hematopoietic stem and progenitor cells and in several non-hematopoietic tissues. In the hematopoietic system, c-Kit is critical for proliferation, survival and differentiation. During recent years exploration of the signalling pathways downstream of this receptor has yielded significant new insights in the field. In this review, we will summarise the c-Kit background, structure, downstream signalling and medical significance with particular focus on its role in hematopoietic progenitor cells and mast cells.  相似文献   

4.
Cofilin/ADF proteins are a ubiquitously expressed family of F-actin depolymerizing factors found in eukaryotic cells including plants. In vitro, cofilin/ADF activity has been shown to be essential for actin driven motility, by accelerating actin filament turnover. Three actin depolymerizing factors (n-cofilin, m-cofilin, ADF) can be found in mouse and human. Here we show that in mouse the non-muscle-specific gene-n-cofilin-is essential for migration of neural crest cells as well as other cell types in the paraxial mesoderm. The main defects observed in n-cofilin mutant embryos are an impaired delamination and migration of neural crest cells, affecting the development of neural crest derived tissues. Neural crest cells lacking n-cofilin do not polarize, and F-actin bundles or fibers are not detectable. In addition, n-cofilin is required for neuronal precursor cell proliferation and scattering. These defects result in a complete lack of neural tube closure in n-cofilin mutant embryos. Although ADF is overexpressed in mutant embryos, this cannot compensate the lack of n-cofilin, suggesting that they might have a different function in embryonic development. Our data suggest that in mammalian development, regulation of the actin cytoskeleton by the F-actin depolymerizing factor n-cofilin is critical for epithelial-mesenchymal type of cell shape changes as well as cell proliferation.  相似文献   

5.
Caveolin is a major structural component of caveolae and has been implicated in the regulation of the function of several caveolae-associated signaling molecules. Platelet-derived growth factor (PDGF) receptors and caveolin were colocalized in the same subcellular fraction after sucrose density gradient fractionation of fibroblasts. Additionally, we found that the PDGF receptors interacted with caveolin in NIH3T3 fibroblast cells. We then examined whether caveolin directly binds to PDGF receptors and inhibits kinase activity using a recombinant PDGF receptor overexpressed in insect cells and peptides derived from the scaffolding domain of caveolin subtypes. We found the peptide from caveolin-1 and -3, but not -2, inhibited the autophosphorylation of PDGF receptors in a dose-dependent manner. Similarly, caveolin-1 and -3 peptides directly bound to PDGF receptors. Mutational analysis using a series of truncated caveolin-3 peptides (20-, 17-, 14-, and 11-mer peptides) revealed that at least 17 amino acid residues of the peptide were required to inhibit and directly bind to PDGF receptors. Thus, our findings suggest that PDGF receptors directly interact with caveolin subtypes, leading to the inhibition of kinase activity. Caveolin may be another regulating factor of PDGF-mediated tyrosine kinase signaling.  相似文献   

6.
7.
8.
For about four decades, platelet-derived growth factors (PDGF) and their receptors have been the subject of intense research, revealing their roles in embryo development and human diseases. Drugs such as imatinib, which selectively inhibit the tyrosine kinase activity of these receptors, have been approved for the treatment of cancers such as gastrointestinal stromal tumors and chronic eosinophilic leukemia. Today, the interest in these factors is still increasing in relationship with new potential clinical applications in cancer, stroke, fibrosis and infectious diseases. This review focuses on the mechanisms of PDGF receptor signaling, with an emphasis on pathways that are important for disease development. Of particular interest, recent studies revealed significant differences between normal and cancer cells regarding signal transduction by these growth factors.  相似文献   

9.
Here, we discuss the transition model of receptor tyrosine kinase (RTK) activation, which is derived from biophysical investigations of RTK interactions and signaling. The model postulates that (1) RTKs can interact laterally to form dimers even in the absence of ligand, (2) different unliganded RTK dimers have different stabilities, (3) ligand binding stabilizes the RTK dimers, and (4) ligand binding causes structural changes in the RTK dimer. The model is grounded in the principles of physical chemistry and provides a framework to understand RTK activity and to make predictions in quantitative terms. It can guide basic research aimed at uncovering the mechanism of RTK activation and, in the long run, can empower the search for modulators of RTK function.  相似文献   

10.
Alveolar rhabdomyosarcoma (aRMS) is a very aggressive sarcoma of children and young adults. Our previous studies have shown that small molecule inhibition of Pdgfra is initially very effective in an aRMS mouse model. However, slowly evolving, acquired resistance to a narrow-spectrum kinase inhibitor (imatinib) was common. We identified Src family kinases (SFKs) to be potentiators of Pdgfra in murine aRMS primary cell cultures from mouse tumors with evolved resistance in vivo in comparison to untreated cultures. Treating the resistant primary cell cultures with a combination of Pdgfra and Src inhibitors had a strong additive effect on cell viability. In Pdgfra knockout tumors, however, the Src inhibitor had no effect on tumor cell viability. Sorafenib, whose targets include not only PDGFRA but also the Src downstream target Raf, was effective at inhibiting mouse and human tumor cell growth and halted progression of mouse aRMS tumors in vivo. These results suggest that an adaptive Src-Pdgfra-Raf-Mapk axis is relevant to PDGFRA inhibition in rhabdomyosarcoma.  相似文献   

11.
Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells. Syk is a key mediator of signaling pathways downstream of several platelet pathways including the ITAM bearing glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor and the hemITAM containing C-type lectin-like receptor-2 (CLEC-2). Since platelet activation is a crucial step in both hemostasis and thrombosis, we evaluated the importance of Syk Y342 in these processes by producing an Syk Y342F knock-in mouse. When using a CLEC-2 antibody as an agonist, reduced aggregation and secretion were observed in Syk Y342F mouse platelets when compared with control mouse platelets. Platelet reactivity was also reduced in response to the GPVI agonist collagen-related peptide. Signaling initiated by either GPVI or CLEC-2 was also greatly inhibited, including Syk Y519/520 phosphorylation. Hemostasis, as measured by tail bleeding time, was not altered in Syk Y342F mice, but thrombus formation in response to FeCl3 injury was prolonged in Syk Y342F mice. These data demonstrate that phosphorylation of Y342 on Syk following stimulation of either GPVI or CLEC-2 receptors is important for the ability of Syk to transduce a signal.  相似文献   

12.
The suppressor of cytokine signaling 6 (SOCS6), an emerged important member of SOCS family, has attracted enhancing attention regarding its pivotal role in the development and progression of cancers. As part of negative feedback regulation, SOCS6 has been implicated in attenuating cytokine signal transduction via inhibiting the signaling cascade of activated cytokine receptors and multiple receptor tyrosine kinase signaling. Decreased SOCS6 expression is involved in diverse tumorigenic processes, such as abnormal cell proliferation, evasion of apoptosis, cancer migration, and cancer stem cell maintenance. Herein, this review summarized the mechanisms of SOCS6 regulation underlying multiple pathways. In particular, we focus on the pathological processes of cancer targeted by SOCS6 and discuss its inhibitory role during tumor progression. Also, we focused on the clinical relevance of SOCS6 in cancer biomarker and prognosis, as well as its significance in chemoresistance and radioresistance. In all, this review pave a way to assist in experimental designs and emphasize the potential clinical value of SOCS6 for cancer.  相似文献   

13.
Interleukin (IL)-17, the founding member of the IL-17 cytokine family, is the hallmark of a novel subset of CD4+ T cells that is regulated by TGFbeta, IL-6, and IL-23. IL-17 plays an important role in promoting tissue inflammation in host defense against infection and in autoimmune diseases. Although IL-17 has been reported to regulate the expression of proinflammatory cytokines, chemokines, and matrix metalloproteinases, the signaling mechanism of IL-17 receptor has not been understood. An earlier study found that IL-17 activates NF-kappaB and MAPK pathways and requires TRAF6 to induce IL-6. However, it is unknown what molecule(s) directly associates with IL-17 receptor to initiate the signaling. We demonstrate here that IL-17 receptor family shares sequence homology in their intracellular region with Toll-IL-1 receptor (TIR) domains and with Act1, a novel adaptor previously reported as an NF-kappaB activator. MyD88 and IRAK4, downstream signaling components of TIR, are not required for IL-17 signaling. On the other hand, Act1 and IL-17 receptor directly associate likely via homotypic interaction. Deficiency of Act1 in fibroblast abrogates IL-17-induced cytokine and chemokine expression, as well as the induction of C/EBPbeta, C/EBPdelta, and IkappaBzeta. Also, absence of Act1 results in a selective defect in IL-17-induced activation of NF-kappaB pathway. These results thus indicate Act1 as a membrane-proximal adaptor of IL-17 receptor with an essential role in induction of inflammatory genes. Our study not only for the first time reveals an immediate signaling mechanism downstream of an IL-17 family receptor but also has implications in therapeutic treatment of various immune diseases.  相似文献   

14.
15.
16.
Centrioles and basal bodies are cylinders composed of nine triplet microtubule blades that play essential roles in the centrosome and in flagellar assembly. Chlamydomonas cells with the bld2-1 mutation fail to assemble doublet and triplet microtubules and have defects in cleavage furrow placement and meiosis. Using positional cloning, we have walked 720 kb and identified a 13.2-kb fragment that contains epsilon-tubulin and rescues the Bld2 defects. The bld2-1 allele has a premature stop codon and intragenic revertants replace the stop codon with glutamine, glutamate, or lysine. Polyclonal antibodies to epsilon-tubulin show peripheral labeling of full-length basal bodies and centrioles. Thus, epsilon-tubulin is encoded by the BLD2 allele and epsilon-tubulin plays a role in basal body/centriole morphogenesis.  相似文献   

17.
Y1 adrenocortical cells respond to ACTH with a characteristic rounding-up that facilitates cAMP signaling, critical for transport of cholesterol to the mitochondria and increase in steroid secretion. We here demonstrate that caveolin-1 participates in coupling activation of protein kinase A (PKA) to the control of cell shape. ACTH/8-Br-cAMP induced reorganization of caveolin-1-positive structures in correlation with the cellular rounding-up. Concomitant with this change, there was an increase in the phosphorylation of caveolin-1 (Tyr-14) localized at focal adhesions (FA) with reorganization of FA to rounded, ringlike structures. Colocalization with phalloidin showed that phosphocaveolin is present at the edge of actin filaments and that after ACTH stimulation F-actin dots at the cell periphery become surrounded by phosphocaveolin-1. These observations along with electron microscopy studies revealed these structures as podosomes. Podosome assembly was dependent on both PKA and tyrosine kinase activities because their formation was impaired after treatment with specific inhibitors [myristoylated PKI (mPKI) or PP2, respectively] previous to ACTH/8-Br-cAMP stimulation. These results show for the first time that ACTH induces caveolin-1 phosphorylation and podosome assembly in Y1 cells and support the view that the morphological and functional responses to PKA activation in steroidogenic cells are related to cytoskeleton dynamics.  相似文献   

18.
One mechanism used by receptor tyrosine kinases to relay a signal to different downstream effector molecules is to use adaptor proteins that provide docking sites for a variety of proteins. The daughter of sevenless (dos) gene was isolated in a genetic screen for components acting downstream of the Sevenless (Sev) receptor tyrosine kinase. Dos contains a N-terminally located PH domain and several tyrosine residues within consensus binding sites for a number of SH2 domain containing proteins. The structural features of Dos and experiments demonstrating tyrosine phosphorylation of Dos upon Sev activation suggested that Dos belongs to the family of multisite adaptor proteins that include the Insulin Receptor Substrate (IRS) proteins, Gab1, and Gab2. Here, we studied the structural requirements for Dos function in receptor tyrosine kinase mediated signaling processes by expressing mutated dos transgenes in the fly. We show that mutant Dos proteins lacking the putative binding sites for the SH2 domains of Shc, PhospholipaseC-γ (PLC-γ) and the regulatory subunit of Phosphoinositide 3-kinase (PI3-K) can substitute the loss of endogenous Dos function during development. In contrast, tyrosine 801, corresponding to a predicted Corkscrew (Csw) tyrosine phosphatase SH2 domain binding site, is essential for Dos function. Furthermore, we assayed whether the Pleckstrin homology (PH) domain is required for Dos function and localization. Evidence is provided that deletion or mutation of the PH domain interferes with the function but not with localization of the Dos protein. The Dos PH domain can be replaced by the Gab1 PH domain but not by a heterologous membrane anchor, suggesting a specific function of the PH domain in regulating signal transduction.  相似文献   

19.
Although fibroblast growth factor 9 (FGF9) is widely expressed in the central nervous system (CNS), the function of FGF9 in neural development remains undefined. To address this question, we deleted the Fgf9 gene specifically in the neural tube and demonstrated that FGF9 plays a key role in the postnatal migration of cerebellar granule neurons. Fgf9-null mice showed severe ataxia associated with disrupted Bergmann fiber scaffold formation, impaired granule neuron migration, and upset Purkinje cell maturation. Ex vivo cultured wildtype or Fgf9-null glia displayed a stellate morphology. Coculture with wildtype neurons, but not Fgf9-deficient neurons, or treating with FGF1 or FGF9 induced the cells to adopt a radial glial morphology. In situ hybridization showed that Fgf9 was expressed in neurons and immunostaining revealed that FGF9 was broadly distributed in both neurons and Bergmann glial radial fibers. Genetic analyses revealed that the FGF9 activities in cerebellar development are primarily transduced by FGF receptors 1 and 2. Furthermore, inhibition of the MAP kinase pathway, but not the PI3K/AKT pathway, abrogated the FGF activity to induce glial morphological changes, suggesting that the activity is mediated by the MAP kinase pathway. This work demonstrates that granule neurons secrete FGF9 to control formation of the Bergmann fiber scaffold, which in turn, guides their own inward migration and maturation of Purkinje cells.  相似文献   

20.
Pan1p is a yeast actin cytoskeleton-associated protein localized in actin patches. It activates the Arp2/3 complex, which is necessary for actin polymerization and endocytosis. We isolated the pan1-11 yeast mutant unable to grow on oleate as a sole carbon source and, therefore, exhibiting the Oleate- phenotype. In addition, mutant cells are temperature-sensitive and grow more slowly on glycerol or succinate-containing medium but similarly to the wild type on ethanol, pyruvate or acetate-containing media; this indicates proper functioning of the mitochondrial respiratory chain. However, growth on ethanol medium is compromised when oleic acid is present. Cells show growth arrest in the apical growth phase, and accumulation of cells with abnormally elongated buds is observed. The growth defects of pan1-11 are suppressed by overexpression of the END3 gene encoding a protein that binds Pan1p. The morphology of peroxisomes and induction of peroxisomal enzymes are normal in pan1-11, indicating that the defect in growth on oleate medium does not result from impairment in peroxisome function. The pan1-11 allele has a deletion of a fragment encoding amino acids 1109-1126 that are part of (QPTQPV)7 repeats. Surprisingly, the independently isolated pan1-9 mutant, which expresses a truncated form of Pan1p comprising aa 1-859, is able to grow on all media tested. Our results indicate that Pan1p, and possibly other components of the actin cytoskeleton, are necessary to properly regulate growth of dividing cells in response to the presence of some alternative carbon sources in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号