首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have shown previously that Escherichia coli K92 produces two different capsular polymers known as CA (colanic acid) and PA (polysialic acid) in a thermoregulated manner. The complex Rcs phosphorelay is largely related to the regulation of CA synthesis. Through deletion of rscA and rscB genes, we show that the Rcs system is involved in the regulation of both CA and PA synthesis in E. coli K92. Deletion of either rcsA or rcsB genes resulted in decreased expression of cps (CA biosynthesis cluster) at 19°C and 37°C, but only CA production was reduced at 19°C. Concerning PA, both deletions enhanced its synthesis at 37°C, which does not correlate with the reduced kps (PA biosynthesis cluster) expression observed in the rcsB mutant. Under this condition, expression of the nan operon responsible for PA catabolism was greatly reduced. Although RcsA and RcsB acted as negative regulators of PA synthesis at 37°C, their absence did not reestablish PA expression at low temperatures, despite the deletion of rcsB resulting in enhanced kps expression. Finally, our results revealed that RcsB controlled the expression of several genes (dsrA, rfaH, h-ns and slyA) involved in the thermoregulation of CA and PA synthesis, indicating that RcsB is part of a complex regulatory mechanism governing the surface appearance in E. coli.  相似文献   

2.
3.
4.
Escherichia coli RfaH activates gene expression by tethering the elongating RNA polymerase to the ribosome. This bridging action requires a complete refolding of the RfaH C-terminal domain (CTD) from an α-helical hairpin, which binds to the N-terminal domain (NTD) in the free protein, to a β-barrel, which interacts with the ribosomal protein S10 following RfaH recruitment to its target operons. The CTD forms a β-barrel when expressed alone or proteolytically separated from the NTD, indicating that the α-helical state is trapped by the NTD, perhaps co-translationally. Alternatively, the interdomain contacts may be sufficient to drive the formation of the α-helical form. Here, we use functional and NMR analyses to show that the denatured RfaH refolds into the native state and that RfaH in which the order of the domains is reversed is fully functional in vitro and in vivo. Our results indicate that all information necessary to determine its fold is encoded within RfaH itself, whereas accessory factors or sequential folding of NTD and CTD during translation are dispensable. These findings suggest that universally conserved RfaH homologs may change folds to accommodate diverse interaction partners and that context-dependent protein refolding may be widespread in nature.  相似文献   

5.
Catalase in plants is a heme-coordinated tetrameric protein that primarily disproportionates hydrogen peroxide into water and oxygen. It plays an important role in maintaining cellular concentration of hydrogen peroxide to a level, necessary for all aspects of normal plant growth and development. Except for its recombinant expression in transgenic plants and insect cell line, the protein is yet to be synthesized in its bio-active form in prokaryotic expression system. Attempts made in past for recombinant expression of plant catalase in Escherichia coli consistently resulted in formation of insoluble and inactive aggregates of inclusion body. Here we have shown the specific requirement of a thioredoxin fusion partner, the involvement of trigger factor protein and the low temperature treatment during induction period for synthesis of completely solubilized rice plant catalase-A in recombinant E. coli. Furthermore, the bacteria required the supplementation of δ-aminolevulinic acid to produce bio-active recombinant rice catalase-A. The molecular and biochemical properties of the purified recombinant protein showed the characteristic features of a typical mono-functional plant catalase. These results attest to the usefulness of the present protocol for production of plant catalase using E. coli as heterologous expression system.  相似文献   

6.
7.
8.
Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the β-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.  相似文献   

9.
10.
11.
12.
Many gram-negative bacteria synthesize N-acyl homoserine lactone autoinducer molecules as quorum-sensing signals which act as cell density-dependent regulators of gene expression. We have investigated the in vivo source of the acyl chain and homoserine lactone components of the autoinducer synthesized by the LuxI homolog, TraI. In Escherichia coli, synthesis of N-(3-oxooctanoyl)homoserine lactone by TraI was unaffected in a fadD mutant blocked in β-oxidative fatty acid degradation. Also, conditions known to induce the fad regulon did not increase autoinducer synthesis. In contrast, cerulenin and diazoborine, specific inhibitors of fatty acid synthesis, both blocked autoinducer synthesis even in a strain dependent on β-oxidative fatty acid degradation for growth. These data provide the first in vivo evidence that the acyl chains in autoinducers synthesized by LuxI-family synthases are derived from acyl-acyl carrier protein substrates rather than acyl coenzyme A substrates. Also, we show that decreased levels of intracellular S-adenosylmethionine caused by expression of bacteriophage T3 S-adenosylmethionine hydrolase result in a marked reduction in autoinducer synthesis, thus providing direct in vivo evidence that the homoserine lactone ring of LuxI-family autoinducers is derived from S-adenosylmethionine.  相似文献   

13.
Ferulic acid (FA) is a natural methylated phenolic acid which represents various bioactivities. Bioproduction of FA suffers from insufficient methyl donor supplement and inefficient hydroxylation. To overcome these hurdles, we first activate the S-adenosylmethionine (SAM) cycle in E. coli by using endogenous genes to supply sufficient methyl donor. Then, a small protein Fre is introduced into the pathway to efficiently regenerate FADH2 for the hydroxylation. Remarkably, regeneration of these two cofactors dramatically promotes FA synthesis. Together with decreasing the byproducts formation and boosting precursor supply, the titer of FA reaches 5.09 g/L under fed-batch conditions, indicating a 20-fold improvement compared with the original producing E. coli strain. This work not only establishes a promising microbial platform for industrial level production of FA and its derivatives, but also highlights a convenient and effective strategy to enhance the biosynthesis of chemicals requiring methylation and FADH2-dependent hydroxylation.  相似文献   

14.
15.
16.
17.
Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.  相似文献   

18.
Bacterial tyrosine-kinases have been demonstrated to participate in the regulation of capsule polysaccharides (CPS) and exopolysaccharides (EPS) production and export. However, discrepant data have been reported on the molecular mechanism responsible for this regulation depending on the bacterial species analyzed. Special attention was previously paid to the tyrosine-kinase Wzcca of Escherichia coli K-12, which is involved in the production of the exopolysaccharide, colanic acid, and autophosphorylates by using a cooperative two-step process. In this work, we took advantage of these observations to investigate in further detail the effect of Wzcca phosphorylation on the colanic acid production. First, it is shown that expression of the phosphorylated form of Wzc prevents production of colanic acid whereas expression of the non-phosphorylated form allows biosynthesis of this exopolysaccharide. However, we provide evidence that, in the latter case, the size distribution of the colanic acid polymer is less scattered than in the case of the wild-type strain expressing both phosphorylated and non-phosphorylated forms of Wzc. It is then demonstrated that colanic acid production is not merely regulated by an on/off mechanism and that, instead, both phosphorylated and non-phosphorylated forms of Wzc are required to promote colanic acid synthesis. Moreover, a series of data suggests that besides the involvement of phosphorylated and non-phosphorylated forms of Wzc in the production of colanic acid, two particular regions of this kinase play as such an important role in the synthesis of this exopolysaccharide: a proline-rich domain located in the N-terminal part of Wzcca, and a tyrosine cluster present in the C-terminal portion of the enzyme. Furthermore, considering that polysaccharides are known to facilitate bacterial resistance to certain environmental stresses, it is shown that the resistance of E. coli to desiccation is directly connected with the phosphorylation state of Wzcca.  相似文献   

19.
3-Phenylpropionic acid (3PPA) and 3-(4-hydroxyphenyl) propionic acid (HPPA) are important commodity aromatic acids widely used in food, pharmaceutical and chemical industries. Currently, 3PPA and HPPA are mainly manufactured through chemical synthesis, which contains multiple steps involving toxic solvents and catalysts harmful to environment. Therefore, replacement of such existing petroleum-derived approaches with simple and environmentally friendly biological processes is highly desirable for manufacture of these chemicals. Here, for the first time we demonstrated the de novo biosynthesis of 3PPA and HPPA using simple carbon sources in E. coli by extending the cinnamic acids biosynthesis pathways through biological hydrogenation. We first screened 11 2-enoate reductases (ER) from nine microorganisms, leading to efficient conversion of cinnamic acid and p-coumaric acid to 3PPA and HPPA, respectively. Surprisingly, we found a strictly oxygen-sensitive Clostridia ER capable of functioning efficiently in E. coli even under aerobic conditions. On this basis, reconstitution of the full pathways led to the de novo production of 3PPA and HPPA and the accumulation of the intermediates (cinnamic acid and p-coumaric acid) with cell toxicity. To address this problem, different expression strategies were attempted to optimize individual enzyme׳s expression level and minimize intermediates accumulation. Finally, the titers of 3PPA and HPPA reached 366.77 mg/L and 225.10 mg/L in shake flasks, respectively. This study not only demonstrated the potential of microbial approach as an alternative to chemical process, but also proved the possibility of using oxygen-sensitive enzymes under aerobic conditions.  相似文献   

20.
Gram-negative bacteria, including Escherichia coli, release outer membrane vesicles (OMVs) that are derived from the bacterial outer membrane. OMVs contribute to bacterial cell–cell communications and host–microbe interactions by delivering components to locations outside the bacterial cell. In order to explore the molecular machinery involved in OMV biogenesis, the role of a major OMV protein was examined in the production of OMVs from E. coli W3110, which is a widely used standard E. coli K-12 strain. In addition to OmpC and OmpA, which are used as marker proteins for OMVs, an analysis of E. coli W3110 OMVs revealed that they also contain abundant levels of FliC, which is also known as flagellin. A membrane-impermeable biotin-labeling reagent did not label FliC in intact OMVs, but labeled FliC in sonically disrupted OMVs, suggesting that FliC is localized in the lumen of OMV. Compared to the parental strain expressing wild-type fliC, an E. coli strain with a fliC-null mutation produced reduced amounts of OMVs based on both protein and phosphate levels. In addition, an E. coli W3110-derived strain with a null-mutation in flgK, which encodes flagellar hook-associated protein that is essential along with FliC for flagella synthesis, also produced fewer OMVs than the parental strain. Taken together, these results indicate that the ability to form flagella, including the synthesis of flagella proteins, affects the production of E. coli W3110 OMVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号