首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) and examined the TKO (Otx1/Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.  相似文献   

2.
In the mouse, the Otx2 gene has been shown to play essential roles in the visceral endoderm during anterior-posterior axis formation and head induction. While these are primary processes in vertebrate embryogenesis, the visceral endoderm is a tissue unique to mammals. Two enhancers (VE and CM) have been previously found to direct Otx2 expression during early embryogenesis. This study demonstrates that in anterior visceral endoderm the CM enhancer does not have an activity by itself, but enhances the activity of the VE enhancer. These two enhancers also cooperate for the activities in anterior mesendoderm and cephalic mesenchyme. Comparative studies suggest that VE enhancer function was most likely established before the divergence of sarcopterygians into Actinistia, Dipnoi and tetrapods, while the nucleotide sequence corresponding to the VE enhancer was already present in the last common ancestor of bony fishes. The CM enhancer sequence and function would have been also established in ancestral sarcopterygians. The VE/CM enhancers and their gene cascades in the ancestral sarcopterygian head organizer would then have been co-opted by amphibian deep endoderm cells and mammalian visceral endoderm cells for the head development.  相似文献   

3.
During embryogenesis, the Dkk1 mediated Wnt inhibition controls the spatiotemporal dynamics of cell fate determination, cell differentiation and cell death. Furthermore, the Dkk1 dose is critical for the normal Wnt homeostasis, as alteration of the Dkk1 activity is associated with various diseases. We investigated the regulation of Dkk1 expression during embryonic development. We identified nine conserved non-coding elements (CNEs), located 3′ to the Dkk1 locus. Analyses of the regulatory potential revealed that four of these CNEs in combination drive reporter expression very similar to Dkk1 expression in several organs of transgenic embryos. We extended the knowledge of Dkk1 expression during hypophysis, external genitalia and kidney development, suggesting so far to unexplored functions of Dkk1 during the development of these organs. Characterization of the regulatory potential of four individual CNEs revealed that each of these promotes Dkk1 expression in brain and kidney. In combination, two enhancers are responsible for expression in the pituitary and the genital tubercle. Furthermore, individual CNEs mediates craniofacial, optic cup and limb specific Dkk1 regulation. Our study substantially improves the knowledge of Dkk1 regulation during embryonic development and thus might be of high relevance for therapeutic approaches.  相似文献   

4.
5.
Delta-like 3 (Dll3) is a divergent ligand and modulator of the Notch signaling pathway only identified so far in mammals. Null mutations of Dll3 disrupt cycling expression of Notch targets Hes1, Hes5, and Lfng, but not of Hes7. Compared with Dll1 or Notch1, the effects of Dll3 mutations are less severe for gene expression in the presomitic mesoderm, yet severe segmentation phenotypes and vertebral defects result in both human and mouse. Reasoning that Dll3 specifically disrupts key regulators of somite cycling, we carried out functional analysis to identify targets accounting for the segmental phenotype. Using microdissected embryonic tissue from somitic and presomitic mesodermal tissue, we identified new genes enriched in these tissues, including Limch1, Rhpn2, and A130022J15Rik. Surprisingly, we only identified a small number of genes disrupted by the Dll3 mutation. These include Uncx, a somite gene required for rib and vertebral patterning, and Nrarp, a regulator of Notch/Wnt signaling in zebrafish and a cycling gene in mouse. To determine the effects of Dll3 mutation on Nrarp, we characterized the cycling expression of this gene from early (8.5 dpc) to late (10.5 dpc) somitogenesis. Nrarp displays a distinct pattern of cycling phases when compared to Lfng and Axin2 (a Wnt pathway gene) at 9.5 dpc but appears to be in phase with Lfng by 10.5 dpc. Nrarp cycling appears to require Dll3 but not Lfng modulation. In Dll3 null embryos, Nrarp displayed static patterns. However, in Lfng null embryos, Nrarp appeared static at 8.5 dpc but resumed cycling expression by 9.5 and dynamic expression at 10.5 dpc stages. By contrast, in Wnt3a null embryos, Nrarp expression was completely absent in the presomitic mesoderm. Towards identifying the role of Dll3 in regulating somitogenesis, Nrarp emerges as a potentially important regulator that requires Dll3 but not Lfng for normal function.  相似文献   

6.
Morphogenesis during eye development requires retinoic acid (RA) receptors plus RA-synthesizing enzymes, and loss of RA signaling leads to ocular disorders associated with loss of Pitx2 expression in perioptic mesenchyme. Several Wnt signaling components are expressed in ocular tissues during eye development including Dkk2, encoding an inhibitor of Wnt/β-catenin signaling, which was previously shown to be induced by Pitx2 in the perioptic mesenchyme. Here, we investigated potential cross-talk between RA and Wnt signaling during ocular development. Genetic studies using Raldh1/Raldh3 double null mice deficient for ocular RA synthesis demonstrated that Pitx2 and Dkk2 were both down-regulated in perioptic mesenchyme. Chromatin immunoprecipitation and gel mobility shift studies demonstrated the existence of a DR5 RA response element upstream of Pitx2 that binds all three RA receptors in embryonic eye. Axin2, an endogenous readout of Wnt/β-catenin signaling, was up-regulated in cornea and perioptic mesenchyme of RA deficient embryos. Also, expression of Wnt5a was expanded in perioptic mesenchyme of RA deficient eyes. Our findings demonstrate excessive activation of Wnt signaling in the perioptic mesenchyme of RA deficient mice which may be responsible for abnormal development leading to defective optic cup, cornea, and eyelid morphogenesis.  相似文献   

7.
8.
9.
Previous analysis employing chimeric and transgenic rescue experiments has suggested that Otx2 is required in the neuroectoderm for development of the forebrain region. In order to elucidate the precise role of Otx2 in forebrain development, we attempted to generate an allelic series of Otx2 mutations by Flp- and Cre-mediated recombination for the production of conditional knock-out mice. Unexpectedly, the neo-cassette insertion created a hypomorphic Otx2 allele; consequently, the phenotype of compound mutant embryos carrying both a hypomorphic and a null allele (Otx2(frt-neo/-)) was analyzed. Otx2(frt-neo/-) mutant mice died at birth, displaying rostral head malformations. Molecular marker analysis demonstrated that Otx2(frt-neo/-) mutant embryos appeared to undergo anterior-posterior axis generation and induction of anterior neuroectoderm normally; however, these mutants subsequently failed to correctly specify the forebrain region. As the rostral margin of the neural plate, termed the anterior neural ridge (ANR), plays crucial roles with respect to neural plate specification, we examined expression of molecular markers for the ANR and the neural plate; moreover, neural plate explant studies were performed. Analyses revealed that telencephalic gene expression did not occur in mutant embryos due to defects of the neural plate; however, the mutant ANR bore normal induction activity on gene expression. These results further suggest that Otx2 dosage may be crucial in the neural plate with respect to response to inductive signals primarily from the ANR for forebrain specification.  相似文献   

10.
SUCLA2-related mitochondrial DNA (mtDNA) depletion syndrome is a result of mutations in the β subunit of the ADP-dependent isoform of the Krebs cycle succinyl-CoA synthase (SCS). The mechanism of tissue specificity and mtDNA depletion is elusive but complementation by the GDP-dependent isoform encoded by SUCLG2, and the association with mitochondrial nucleoside diphosphate kinase (NDPK), is a plausible link.We have investigated this relationship by studying SUCLA2 deficient fibroblasts derived from patients and detected normal mtDNA content and normal NDPK activity. However, knockdown of SUCLG2 by shRNA in both patient and control fibroblasts resulted in a significant decrease in mtDNA amount, decreased NDPK and cytochrome c oxidase activities, and a marked growth impairment. This suggests that, SUCLG2, to a higher degree than SUCLA2, is crucial for mtDNA maintenance and that mitochondrial NDPK is involved. Although results pertain to a cell culture system, the findings might explain the pathomechanism and tissue specificity in mtDNA depletion caused by defective SUCLA2.  相似文献   

11.
The single Fgf8 gene in mice produces eight protein isoforms (Fgf8a-h) with different N-termini by alternative splicing. Gain-of-function studies have demonstrated that Fgf8a and Fgf8b have distinct activities in the developing midbrain and hindbrain (MHB) due to their different binding affinities with FGF receptors. Here we have performed loss-of-function analyses to determine the in vivo requirement for these two Fgf8 spliceforms during MHB development. We showed that deletion of Fgf8b-containing spliceforms (b, d, f and h) leads to loss of multiple key regulatory genes, including Fgf8 itself, in the MHB region. Therefore, specific inactivation of Fgf8b-containing spliceforms, similar to the loss of Fgf8, in MHB progenitors results in deletion of the midbrain, isthmus, and cerebellum. We also created a splice-site mutation abolishing Fgf8a-containing spliceforms (a, c, e, and g). Mice lacking Fgf8a-containing spliceforms exhibit growth retardation and postnatal lethality, and the phenotype is variable in different genetic backgrounds, suggesting that the Fgf8a-containing spliceforms may play a role in modulating the activity of Fgf8. Surprisingly, no discernable defect was detected in the midbrain and cerebellum of Fgf8a-deficient mice. To determine if Fgf17, which is expressed in the MHB region and possesses similar activities to Fgf8a based on gain-of-function studies, may compensate for the loss of Fgf8a, we generated Fgf17 and Fgf8a double mutant mice. Mice lacking both Fgf8a-containing spliceforms and Fgf17 display the same defect in the posterior midbrain and anterior cerebellum as Fgf17 mutant mice. Therefore, Fgf8b-containing spliceforms, but not Fgf8a, are essential for the function of Fgf8 during the development of the midbrain and cerebellum.  相似文献   

12.
13.
A Hoxd11/lacZ reporter, expressed with a Hoxd11-like axial expression pattern in transgenic mouse embryos, is stimulated in tailbud fragments when cultured in presence of Gdf11, a TGF-β growth/differentiation factor. The same construct is also stimulated by Gdf11 when transiently transfected into cultures of HepG2 cells. Stimulation of the reporter in HepG2 cells is enhanced where it contains only the 332 bp Hoxd11 enhancer region VIII upstream or downstream of a luciferase or lacZ reporter. This enhancer contains three elements conserved from fish to mice, one of which has the sequence of a Smad3/4 binding element. Mutation of this motif inhibits the ability of Gdf11 to enhance reporter activity in the HepG2 cell assay. Chromatin immunoprecipitation experiments show direct evidence of Smad2/3 protein binding to the Hoxd11 region VIII enhancer. The action of Gdf11 upon Hoxd11 in HepG2 cells is inhibited, at least in part, by SIS3, a specific inhibitor of Smad3. SIS3 also produces partial inhibition of Hoxd11/lacZ expression in cultured transgenic tailbuds, indicating that Smad3 may play a similar role in the embryonic expression of Hoxd11. Transgenic mouse experiments show that the Smad binding motif is essential for the axial expression of Hoxd11/lacZ reporter in the embryo tailbud, posterior mesoderm and neurectoderm.  相似文献   

14.
In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a 169QACRG173 sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells.  相似文献   

15.
16.
In this work we characterized the immune response of the insect Rhodnius prolixus to a direct injection into the hemocoel of the non-entomopathogenic fungus Aspergillus niger, and evaluated its consequences on host oogenesis. These animals were able to respond by mounting effective cellular and humoral responses to this fungus; these responses were shown, however, to have reproductive fitness costs, as the number of eggs laid per female was significantly reduced. The disturbance of egg formation during infectious process correlated with an elevation in the titer of hemolymph prostaglandin E2 48 h post-challenge. Administration of Zymosan A as an immunogenic non-infectious challenge produced similar effects on phenoloxidase and prophenoloxidase activities, oocyte development and prostaglandin E2 titer, precluding the hypothesis of an effect mediated by fungal metabolites in animals challenged with fungus. Ovaries at 48 h post-challenge showed absence of vitellogenic ovarian follicles, and the in vivo administration of prostaglandin E2 or its receptor agonist misoprostol, partially reproduced this phenotype. Together these data led us to hypothesize that immune-derived prostaglandin E2 raised from the insect response to the fungal challenge is involved in disturbing follicle development, contributing to a reduction in host reproductive output and acting as a host-derived adaptive effector to infection.  相似文献   

17.
Mago nashi (Mago) and Y14 proteins, highly conserved among eukaryotes, participate in mRNA localization and splicing, and as such play important roles in oogenesis, embryogenesis and germ-line sex determination during animal development. Here we identified mago (Acmago) and Y14 (AcY14) homologues derived from Antrodia cinnamomea. Acmago encodes 149 amino acids and AcY14 encodes 168 amino acids. Multiple amino acid sequence alignment as well as secondary and tertiary structure prediction showed that AcMago and AcY14 have similar protein structure to the reported crystal structures of other Mago and Y14 proteins. During fungal development both Acmago and AcY14 genes were abundantly expressed in natural basidiomes. This is the first report of the molecular characterization and expression analysis of the mago and Y14 genes from fungi.  相似文献   

18.
It has been reported that RNAi-dependent chromatin silencing in vertebrates is not restricted to the centromeres. To address whether RNAi machinery could regulate the chromatin structure of imprinted genes, we knocked down Dicer in HEK293 cells and found that the expression of PHLDA2, one of the several genes in the imprinted gene domain of 11p15.5, was specifically upregulated. This was accompanied by a shift towards more activated chromatin at PHLDA2 locus as indicated by change in H3K9 acetylation, however, the methylation state at this locus was not affected. Furthermore, we found that PHLDA2 was downregulated in growth-arrested HEK293 cells induced by either serum deprivation or contact inhibition. This suggests that PHLDA2 upregulation might be a direct result of Dicer depletion rather than the consequence of growth arrest induced by Dicer knockdown. Considering the reports that there is consistent placental outgrowth in PHLDA2 knockout mice and that PHLDA2 overexpression in mice causes growth inhibition, we speculate that PHLDA2 may be a candidate for contributing to the reduced growth rate of Dicer-deficient cells and the very early embryonic lethality in Dicer knockout mice.  相似文献   

19.
NDUFS3 is an integral subunit of the Q module of the mitochondrial respiratory Complex-I. The combined mutation (T145I + R199W) in the subunit is reported to cause optic atrophy and Leigh syndrome accompanied by severe Complex-I deficiency. In the present study, we have cloned and overexpressed the human NDUFS3 subunit and its double mutant in a soluble form in Escherichia coli. The wild-type (w-t) and mutant proteins were purified to homogeneity through a serial two-step chromatographic purification procedure of anion exchange followed by size exclusion chromatography. The integrity and purity of the purified proteins was confirmed by Western blot analysis and MALDI-TOF/TOF. The conformational transitions of the purified subunits were studied through steady state as well as time resolved fluorescence and CD spectroscopy under various denaturing conditions. The mutant protein showed altered polarity around tryptophan residues, changed quenching parameters and also noticeably altered secondary and tertiary structure compared to the w-t protein. Mutant also exhibited a higher tendency than the w-t protein for aggregation which was examined using fluorescent (Thioflavin-T) and spectroscopic (Congo red) dye binding techniques. The pH stability of the w-t and mutant proteins varied at extreme acidic pH and the molten globule like structure of w-t at pH1 was absent in case of the mutant protein. Both the w-t and mutant proteins showed multi-step thermal and Gdn-HCl induced unfolding. Thus, the results provide insight into the alterations of NDUFS3 protein structure caused by the mutations, affecting the overall integrity of the protein and finally leading to disruption of Complex-I assembly.  相似文献   

20.
YsrH is a novel cis-encoded sRNA located on the opposite strand to fabH2, which is essential for fatty acid biosynthesis in bacteria. In this study, YsrH-mediated regulation of fabH2 expression was investigated in Yersinia pseudotuberculosis. Constitutive and inducible over-expression of YsrH decreased the mRNA level of fabH2, while expression of downstream fabD and fabG remained unaffected. Polynucleotide phosphorylase (PNPase) also played an important role in this regulation process by mediating YsrH decay in the exponential phase. Thus, our data defines a cis-encoded sRNA that regulates fatty acid synthesis via a regulatory mechanism also involving PNPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号