首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) and examined the TKO (Otx1/Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.  相似文献   

2.
We have identified cis-regulatory sequences acting on Otx2 expression in epiblast (EP) and anterior neuroectoderm (AN) at about 90 kb 5' upstream. The activity of the EP enhancer is found in the inner cell mass at E3.5 and the entire epiblast at E5.5. The AN enhancer activity is detected initially at E7.0 and ceases by E8.5; it is found later in the dorsomedial aspect of the telencephalon at E10.5. The EP enhancer includes multiple required domains over 2.3 kb, and the AN enhancer is an essential component of the EP enhancer. Mutants lacking the AN enhancer have demonstrated that these cis-sequences indeed regulate Otx2 expression in EP and AN. At the same time, our analysis indicates that another EP and AN enhancer must exist outside of the -170 kb to +120 kb range. In Otx2DeltaAN/- mutants, in which one Otx2 allele lacks the AN enhancer and the other allele is null, anteroposterior axis forms normally and anterior neuroectoderm is normally induced. Subsequently, however, forebrain and midbrain are lost, indicating that Otx2 expression under the AN enhancer functions to maintain anterior neuroectoderm once induced. Furthermore, Otx2 under the AN enhancer cooperates with Emx2 in diencephalon development. The AN enhancer region is conserved among mouse, human and Xenopus; moreover, the counterpart region in Xenopus exhibited an enhancer activity in mouse anterior neuroectoderm.  相似文献   

3.
Otx2 expression in the forebrain and midbrain was found to be regulated by two distinct enhancers (FM and FM2) located at 75 kb 5' upstream and 115 kb 3' downstream. The activities of these two enhancers were absent in anterior neuroectoderm earlier than E8.0; however, at E9.5 their regions of activity spanned the entire mesencephalon and diencephalon with their caudal limits at the boundary with the metencephalon or isthmus. In telencephalon, activities were found only in the dorsomedial aspect. Potential binding sites of OTX and TCF were essential to FM activity, and TCF sites were also essential to FM2 activity. The FM2 enhancer appears to be unique to rodent; however, the FM enhancer region is deeply conserved in gnathostomes. Studies of mutants lacking FM or FM2 enhancer demonstrated that these enhancers indeed regulate Otx2 expression in forebrain and midbrain. Development of mesencephalic and diencephalic regions was differentially regulated in a dose-dependent manner by the cooperation between Otx1 and Otx2 under FM and FM2 enhancers: the more caudal the structure the higher the OTX dose requirement. At E10.5 Otx1-/-Otx2DeltaFM/DeltaFM mutants, in which Otx2 expression under the FM2 enhancer remained, exhibited almost complete loss of the entire diencephalon and mesencephalon; the telencephalon did, however, develop.  相似文献   

4.
The mouse homeobox gene Otx2 plays essential roles at each step and in every tissue during head development. We have previously identified a series of enhancers that are responsible for driving the Otx2 expression in these contexts. Among them the AN enhancer, existing 92 kb 5' upstream, directs Otx2 expression in anterior neuroectoderm (AN) at the headfold stage. Analysis of the enhancer mutant Otx2(DeltaAN/-) indicated that Otx2 expression under the control of this enhancer is essential to the development of AN. This study demonstrates that the AN enhancer is promoter-dependent and regulated by acetylated YY1. YY1 binds to both the AN enhancer and promoter region. YY1 is acetylated in the anterior head, and only acetylated YY1 can bind to the sequence in the enhancer. Moreover, YY1 binding to both of these two sites is essential to Otx2 expression in AN. These YY1 binding sites are highly conserved in AN enhancers in tetrapods, coelacanth and skate, suggesting that establishment of the YY1 regulation coincides with that of OTX2 function in AN development in an ancestral gnathostome.  相似文献   

5.
To assess evolutional changes in the expression pattern of Otx paralogues, expression analyses were undertaken in fugu, bichir, skate and lamprey. Together with those in model vertebrates, the comparison suggested that a gnathostome ancestor would have utilized all of Otx1, Otx2 and Otx5 paralogues in organizer and anterior mesendoderm for head development. In this animal, Otx1 and Otx2 would have also functioned in specification of the anterior neuroectoderm at presomite stage and subsequent development of forebrain/midbrain at somite stage, while Otx5 expression would have already been specialized in epiphysis and eyes. Otx1 and Otx2 functions in anterior neuroectoderm and brain of the gnathostome ancestor would have been differentially maintained by Otx1 in a basal actinopterygian and by Otx2 in a basal sarcopterygian. Otx5 expression in head organizer and anterior mesendoderm seems to have been lost in the teleost lineage after divergence of bichir, and also from the amniotes after divergence of amphibians as independent events. Otx1 expression was lost from the organizer in the tetrapod lineage. In contrast, in a teleost ancestor prior to whole genome duplication, Otx1 and Otx2 would have both been expressed in the dorsal margin of blastoderm, embryonic shield, anterior mesendoderm, anterior neuroectoderm and forebrain/midbrain, at respective stages of head development. Subsequent whole genome duplication and the following genome changes would have caused different Otx paralogue usages in each teleost lineage. Lampreys also have three Otx paralogues; their sequences are highly diverged from gnathostome cognates, but their expression pattern is well related to those of skate Otx cognates.  相似文献   

6.
7.
In the mouse, the Otx2 gene has been shown to play essential roles in the visceral endoderm during anterior-posterior axis formation and head induction. While these are primary processes in vertebrate embryogenesis, the visceral endoderm is a tissue unique to mammals. Two enhancers (VE and CM) have been previously found to direct Otx2 expression during early embryogenesis. This study demonstrates that in anterior visceral endoderm the CM enhancer does not have an activity by itself, but enhances the activity of the VE enhancer. These two enhancers also cooperate for the activities in anterior mesendoderm and cephalic mesenchyme. Comparative studies suggest that VE enhancer function was most likely established before the divergence of sarcopterygians into Actinistia, Dipnoi and tetrapods, while the nucleotide sequence corresponding to the VE enhancer was already present in the last common ancestor of bony fishes. The CM enhancer sequence and function would have been also established in ancestral sarcopterygians. The VE/CM enhancers and their gene cascades in the ancestral sarcopterygian head organizer would then have been co-opted by amphibian deep endoderm cells and mammalian visceral endoderm cells for the head development.  相似文献   

8.
In mouse Otx2 plays essential roles in anterior-posterior axis formation and head development in anterior visceral endoderm and anterior mesendoderm. The Otx2 expression in these sites is regulated by VE and CM enhancers at the 5' proximal to the translation start site, and we proposed that these enhancers would have been established in ancestral sarcoptergians after divergence from actinopterigians for the use of Otx2 as the head organizer gene (Kurokawa et al., 2010). This would make doubtful an earlier proposal of ours that a 1.1 kb fragment located at +14.4 to +15.5 kb 3' (3'En) of fugu Otx2a gene harbors enhancers phylogenetically and functionally homologous to mouse VE and CM enhancers (Kimura-Yoshida et al., 2007). In the present study, we demonstrate that fugu Otx2a is not expressed in the dorsal margin of blastoderm, shield and early anterior mesendoderm, and that the fugu Otx2a 3'En do not exhibit activities at these sites of fugu embryos. We conclude that the fugu Otx2a 3'En does not harbor an organizer enhancer, but encodes an enhancer for the expression in later anterior mesendodermal tissues. Instead, in fugu embryos Otx2b is expressed in the dorsal margin of blastoderm at blastula stage and shield at 50% epiboly, and this expression is directed by an enhancer, 5'En, located at -1000 to -800 bp, which is uniquely conserved among teleost Otx2b orthologues.  相似文献   

9.
Previous analysis employing chimeric and transgenic rescue experiments has suggested that Otx2 is required in the neuroectoderm for development of the forebrain region. In order to elucidate the precise role of Otx2 in forebrain development, we attempted to generate an allelic series of Otx2 mutations by Flp- and Cre-mediated recombination for the production of conditional knock-out mice. Unexpectedly, the neo-cassette insertion created a hypomorphic Otx2 allele; consequently, the phenotype of compound mutant embryos carrying both a hypomorphic and a null allele (Otx2(frt-neo/-)) was analyzed. Otx2(frt-neo/-) mutant mice died at birth, displaying rostral head malformations. Molecular marker analysis demonstrated that Otx2(frt-neo/-) mutant embryos appeared to undergo anterior-posterior axis generation and induction of anterior neuroectoderm normally; however, these mutants subsequently failed to correctly specify the forebrain region. As the rostral margin of the neural plate, termed the anterior neural ridge (ANR), plays crucial roles with respect to neural plate specification, we examined expression of molecular markers for the ANR and the neural plate; moreover, neural plate explant studies were performed. Analyses revealed that telencephalic gene expression did not occur in mutant embryos due to defects of the neural plate; however, the mutant ANR bore normal induction activity on gene expression. These results further suggest that Otx2 dosage may be crucial in the neural plate with respect to response to inductive signals primarily from the ANR for forebrain specification.  相似文献   

10.
Otx2 and Gbx2 are among the earliest genes expressed in the neuroectoderm, dividing it into anterior and posterior domains with a common border that marks the mid-hindbrain junction. Otx2 is required for development of the forebrain and midbrain, and Gbx2 for the anterior hindbrain. Furthermore, opposing interactions between Otx2 and Gbx2 play an important role in positioning the mid-hindbrain boundary, where an organizer forms that regulates midbrain and cerebellum development. We show that the expression domains of Otx2 and Gbx2 are initially established independently of each other at the early headfold stage, and then their expression rapidly becomes interdependent by the late headfold stage. As we demonstrate that the repression of Otx2 by retinoic acid is dependent on an induction of Gbx2 in the anterior brain, molecules other than retinoic acid must regulate the initial expression of Otx2 in vivo. In contrast to previous suggestions that an interaction between Otx2- and Gbx2-expressing cells may be essential for induction of mid-hindbrain organizer factors such as Fgf8, we find that Fgf8 and other essential mid-hindbrain genes are induced in a correct temporal manner in mouse embryos deficient for both Otx2 and Gbx2. However, expression of these genes is abnormally co-localized in a broad anterior region of the neuroectoderm. Finally, we find that by removing Otx2 function, development of rhombomere 3 is rescued in Gbx2(-/-) embryos, showing that Gbx2 plays a permissive, not instructive, role in rhombomere 3 development. Our results provide new insights into induction and maintenance of the mid-hindbrain genetic cascade by showing that a mid-hindbrain competence region is initially established independent of the division of the neuroectoderm into an anterior Otx2-positive domain and posterior Gbx2-positive domain. Furthermore, Otx2 and Gbx2 are required to suppress hindbrain and midbrain development, respectively, and thus allow establishment of the normal spatial domains of Fgf8 and other genes.  相似文献   

11.
Understanding the molecular mechanism controlling induction and maintenance of signals required for specifying anterior territory (forebrain and midbrain) of the central nervous system is a major task of molecular embryology. The current view indicates that in mouse, early specification of the anterior patterning is established at the beginning of gastrulation by the anterior visceral endoderm, while maintenance and refinement of the early specification is under the control of epiblast-derived tissues corresponding to the axial mesendoderm and rostral neuroectoderm. In vertebrates a remarkable amount of data has been collected on the role of genes contributing to brain morphogenesis. Among these genes,the orthodenticle group is defined bythe Drosophila orthodenticle and the vertebrate Otx1 and Otx2 genes, which contain a bicoid-like homeodomain. Mouse models and chimera experiments have provided strong evidence that Otx2 plays an important role in the specification and maintenance of the rostral neuroectoderm destined to become forebrain and midbrain. In evolutionary terms, some of these findings lead us to hypothesize a fascinating and crucial contribution of the Otx genes to the genetic program underlying the establishment of the mammalian brain.  相似文献   

12.
13.
14.
15.
16.
17.
The homeotic genes are essential to the patterning of the anterior-posterior axis along the developing Drosophila embryo. The expression timing and levels of these genes are crucial for the correct specification of segmental identity. The Abdominal-B (Abd-B) gene is first detected in the most posterior abdominal segments at high levels and gradually appears in progressively anterior abdominal segments in lower amounts. Regulatory mutations affecting this expression pattern produce homeotic transformations in the abdomen. The promoter targeting sequences (PTS) from Abd-B locus overcome the enhancer blocking effect of insulators and facilitate long-range enhancer-promoter interactions in transgenic flies (1, 2). In this study, we found that transgene activation by the IAB5 enhancer can be delayed by inserting a 9.5 kb 3′ Abd-B regulatory region containing the Frontabdominal-8 (Fab-8) insulator and the PTS element. We found that the delay is caused by the PTS and an insulator, and it is not specific to the enhancer or the promoter tested. Based on these findings, we hypothesize that the delay of remote enhancers is responsible for the Abd-B expression pattern, which is at least in part due to the regulatory activities of the PTS elements and chromatin boundaries.  相似文献   

18.
19.
20.
In the vertebrate central nervous system (CNS), mutual antagonism between posteriorly expressed Gbx2 and anteriorly expressed Otx2 positions the midbrain/hindbrain boundary (MHB), but does not induce MHB organizer genes such as En, Pax2/5/8 and Wnt1. In the CNS of the cephalochordate amphioxus, Otx is also expressed anteriorly, but En, Pax2/5/8 and Wnt1 are not expressed near the caudal limit of Otx, raising questions about the existence of an MHB organizer in amphioxus. To investigate the evolutionary origins of the MHB, we cloned the single amphioxus Gbx gene. Fluorescence in situ hybridization showed that, as in vertebrates, amphioxus Gbx and the Hox cluster are on the same chromosome. From analysis of linked genes, we argue that during evolution a single ancestral Gbx gene duplicated fourfold in vertebrates, with subsequent loss of two duplicates. Amphioxus Gbx is expressed in all germ layers in the posterior 75% of the embryo, and in the CNS, the Gbx and Otx domains abut at the boundary between the cerebral vesicle (forebrain/midbrain) and the hindbrain. Thus, the genetic machinery to position the MHB was present in the protochordate ancestors of the vertebrates, but is insufficient for induction of organizer genes. Comparison with hemichordates suggests that anterior Otx and posterior Gbx domains were probably overlapping in the ancestral deuterostome and came to abut at the MHB early in the chordate lineage before MHB organizer properties evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号