首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural basis of ligand-induced dimerization of the receptor tyrosine kinase MET by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF) is not well understood. However, interesting insight into the molecular mechanism of MET dimerization has emerged from crystal structures of MET in complex with a bacterial agonist, the invasion protein internalin B (InlB) from pathogenic Listeria monocytogenes. MET activation by InlB promotes uptake of bacteria into host cells. Structural and biophysical data suggest that InlB is monomeric on its own but dimerizes upon binding to the membrane-anchored MET receptor promoting the formation of a signaling active 2:2 complex. The dimerization interface is small and unusually located on the convex side of the curved InlB leucine-rich repeat (LRR) domain. As InlB does not dimerize in solution, the dimerization site could only be identified by studying packing contacts of InlB in various crystal forms and had to be proven by scrutinizing its biological relevance in cellular assays. InlB dimerization is thus an example of a low-affinity contact that appears irrelevant in solution but becomes physiologically significant in the context of 2-dimensional diffusion restricted to the membrane plane. The resulting 2:2 InlB:MET complex has an InlB dimer at its center with one MET molecule bound peripherally to each InlB. This model of ligand-mediated MET dimerization may serve as a blue-print to understand MET activation by NK1, a naturally occurring HGF/SF splice variant and MET agonist. Crystal structures of NK1 repeatedly show a NK1 dimer, in which residues implicated in MET-binding are located on the outside. Thus, MET dimerization by NK1 may also be ligand-mediated with a NK1 dimer at the center of the 2:2 complex with one MET molecule bound peripherally to each NK1. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

2.
The MET tyrosine kinase receptor activated by its ligand HGF/SF, induces several cellular responses, including survival. Nonetheless, the MET receptor is cleaved in stress conditions by caspases within its intracellular region, generating a 40 kDa fragment, p40 MET, with pro-apoptotic properties. Here, we established that this cleavage splits the receptor at the juxtamembrane ESVD site, causing the concomitant generation of p100 MET, corresponding to the entire extracellular region of the MET receptor still spanning the membrane. This fragment is able to bind HGF/SF and to prevent HGF-dependent signaling downstream of full MET, demonstrating its function as a decoy receptor.  相似文献   

3.
Although the treatment of acute myeloid leukemia (AML) has improved substantially in the past three decades, more than half of all patients develop disease that is refractory to intensive chemotherapy. Functional genomics approaches offer a means to discover specific molecules mediating the aberrant growth and survival of cancer cells. Thus, using a loss-of-function RNA interference genomic screen, we identified the aberrant expression of hepatocyte growth factor (HGF) as a crucial element in AML pathogenesis. We found HGF expression leading to autocrine activation of its receptor tyrosine kinase, MET, in nearly half of the AML cell lines and clinical samples we studied. Genetic depletion of HGF or MET potently inhibited the growth and survival of HGF-expressing AML cells. However, leukemic cells treated with the specific MET kinase inhibitor crizotinib developed resistance resulting from compensatory upregulation of HGF expression, leading to the restoration of MET signaling. In cases of AML where MET is coactivated with other tyrosine kinases, such as fibroblast growth factor receptor 1 (FGFR1), concomitant inhibition of FGFR1 and MET blocked this compensatory HGF upregulation, resulting in sustained logarithmic cell killing both in vitro and in xenograft models in vivo. Our results show a widespread dependence of AML cells on autocrine activation of MET, as well as the key role of compensatory upregulation of HGF expression in maintaining leukemogenic signaling by this receptor. We anticipate that these findings will lead to the design of additional strategies to block adaptive cellular responses that drive compensatory ligand expression as an essential component of the targeted inhibition of oncogenic receptors in human cancers.  相似文献   

4.
As more genes conferring risks to neurodevelopmental disorders are identified, translating these genetic risk factors into biological mechanisms that impact the trajectory of the developing brain is a critical next step. Here, we report that disrupted signaling mediated MET receptor tyrosine kinase (RTK), an established risk factor for autism spectrum disorders, in the developing hippocampus glutamatergic circuit leads to profound deficits in neural development, synaptic transmission, and plasticity. In cultured hippocampus slices prepared from neonatal mice, pharmacological inhibition of MET kinase activity suppresses dendritic arborization and disrupts normal dendritic spine development. In addition, single‐neuron knockdown (RNAi) or overexpression of Met in the developing hippocampal CA1 neurons leads to alterations, opposite in nature, in basal synaptic transmission and long‐term plasticity. In forebrain‐specific Met conditional knockout mice (Metfx/fx;emx1cre), an enhanced long‐term potentiation (LTP) and long‐term depression (LTD) were observed at early developmental stages (P12–14) at the Schaffer collateral to CA1 synapses compared with wild‐type littermates. In contrast, LTP and LTD were markedly reduced at young adult stage (P56–70) during which wild‐type mice show robust LTP and LTD. The altered trajectory of synaptic plasticity revealed by this study indicate that temporally regulated MET signaling as an intrinsic, cell autonomous, and pleiotropic mechanism not only critical for neuronal growth and functional maturation, but also for the timing of synaptic plasticity during forebrain glutamatergic circuits development.  相似文献   

5.
6.
Previous work (Gandino, L., Di Renzo, M. F., Giordano, S., Bussolino, F., and Comoglio, P.M. (1990) Oncogene 5, 721-725) has shown that the tyrosine kinase activity of the receptor encoded by the MET protooncogene is negatively modulated by protein kinase C (PKC). We now show that an increase of intracellular Ca2+ has a similar inhibitory effect in vivo, via a PKC-independent mechanism. In GTL-16 cells the p145MET kinase is overexpressed and constitutively phosphorylated on tyrosine. A rapid and reversible decrease of p145MET tyrosine phosphorylation was induced by treatment with the calcium ionophores A23187 or ionomycin. Experiments performed with the ionophores in absence of extracellular calcium showed that a rise in cytoplasmic Ca2+ concentration to 450 nM (due to release from intracellular stores) resulted in a similar effect. These Ca2+ concentrations had no effect on p145MET autophosphorylation in an in vitro kinase assay. This suggests that the effect of Ca2+ on p145MET tyrosine phosphorylation is not direct but may be mediated by Ca(2+)-activated proteins(s). Involvement of Ca(2+)-dependent tyrosine phosphatases was ruled out by experiments carried out in presence of Na2VO4. In vivo labeling with [32P]orthophosphate showed that the rise of intracellular Ca2+ induces serine phosphorylation of p145MET on a specific phosphopeptide. This suggests that Ca2+ negatively modulates p145MET kinase through the phosphorylation of a critical serine residue by a Ca(2+)-activated serine kinase distinct from PKC.  相似文献   

7.
Cabozantinib is known as an inhibitor of receptor tyrosine kinases mainly targeting AXL receptor tyrosine kinase (AXL), MET proto-oncogene-encoded receptor tyrosine kinase (MET), and vascular endothelial growth factor receptor 2. Growth arrest-specific 6 (GAS6) and hepatocyte growth factor (HGF), the natural ligands of AXL and MET, respectively, are associated with the induction of cancer cell proliferation or metastasis. Currently, it is still unclear how cabozantinib regulates cancer cell migration and invasion by inhibiting AXL and MET. This study was conducted to investigate the mechanism underlying the anti-cancer effects of cabozantinib through regulation of AXL and MET signaling.The results of Boyden chamber assays showed that cancer cell migration was induced by GAS6 and HGF in SKOV3 cells in serum-free medium. Combinatorial treatment with GAS6 and HGF exerted an additive effect on cell migration. Furthermore, we examined the role of AXL and MET signaling in cell migration. Short interfering RNA targeting AXL and MET inhibited GAS6- and HGF-induced migration, respectively. Double knockdown of AXL and MET completely suppressed cell migration induced by combination treatment with GAS6 and HGF compared to AXL or MET inhibition alone. Finally, we investigated the effects of cabozantinib on cell migration and invasion. Cabozantinib inhibited AXL and MET phosphorylation and downregulated the downstream mediators, phosphorylated SRC in the presence of both GAS6 and HGF in SKOV3 cells. The cell migration and invasion induced by combined GAS6 and HGF treatment were suppressed by cabozantinib, but not by capmatinib, a selective MET inhibitor.Our data indicate that the GAS6-AXL and HGF-MET signal pathways markedly contribute to cancer cell migration and invasion in an independent manner, suggesting that simultaneous inhibition of these two pathways contributes to the anti-cancer effects of cabozantinib.  相似文献   

8.
Juvenile hormone (JH) has been implicated in many developmental processes in holometabolous insects, but its mechanism of signaling remains controversial. We previously found that in Drosophila Schneider 2 cells, the nuclear receptor FTZ-F1 is required for activation of the E75A gene by JH. Here, we utilized insect two-hybrid assays to show that FTZ-F1 interacts with two JH receptor candidates, the bHLH-PAS paralogs MET and GCE, in a JH-dependent manner. These interactions are severely reduced when helix 12 of the FTZ-F1 activation function 2 (AF2) is removed, implicating AF2 as an interacting site. Through homology modeling, we found that MET and GCE possess a C-terminal α-helix featuring a conserved motif LIXXL that represents a novel nuclear receptor (NR) box. Docking simulations supported by two-hybrid experiments revealed that FTZ-F1·MET and FTZ-F1·GCE heterodimer formation involves a typical NR box-AF2 interaction but does not require the canonical charge clamp residues of FTZ-F1 and relies primarily on hydrophobic contacts, including a unique interaction with helix 4. Moreover, we identified paralog-specific features, including a secondary interaction site found only in MET. Our findings suggest that a novel NR box enables MET and GCE to interact JH-dependently with the AF2 of FTZ-F1.  相似文献   

9.
The growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor MET, the tyrosine kinase encoded by the c-MET proto-oncogene, exert major roles in cancer invasion and metastasis and are key targets for therapy. NK1 is an alternative spliced variant of HGF/SF that consists of the N-terminal (N) and first kringle (K1) domains and has partial agonistic activity. NK1 crystallises as a head-to-tail dimer with an extensive inter-protomeric interface resulting from contacts between the two short interdomain linkers and reciprocal contacts between the N and K1 domains. Here we show that a subset of mutants at the NK1 dimer interface, such as the linker mutants Y124A or N127A or the kringle mutant V140A:I142A, bind the MET receptor with affinities comparable to wild-type NK1 but fail to assemble a dimeric, signalling competent NK1-MET complex. These NK1 variants have no detectable agonistic activity on, behave as bona fide receptor antagonists by blocking cell migration and DNA synthesis in target cells and have strong prospects as therapeutics for human cancer.  相似文献   

10.
The shadow of death on the MET tyrosine kinase receptor   总被引:2,自引:0,他引:2  
The MET tyrosine kinase receptor is a high-affinity receptor for hepatocyte growth factor/scatter factor (HGF/SF). HGF/SF-MET system is necessary for embryonic development, and aberrant MET signalling favours tumorigenesis and metastasis. MET is a prototype of tyrosine kinase receptor, which is able to counteract apoptosis through the initiation of a survival signal involving notably the PI3K-Akt pathway. Paradoxically, the MET receptor is also able to promote apoptosis when activated by HGF/SF or independently of ligand stimulation. The molecular mechanisms underlying this uncommon response have been recently investigated and revealed dual antiapoptotic or proapoptotic property of MET according to the cell type or stress conditions. Although the involvement of MET in the regulation of integrated biological responses mostly took into account its efficient antiapoptotic function, its proapoptotic responses could also be important for regulation of the survival/apoptosis balance and play a role during the development or tumour progression.  相似文献   

11.
MET(MNNG HOS transforming gene) is one of the receptor tyrosine kinases whose activities are frequently altered in human cancers, and it is a promising therapeutic target. MET is normally activated by its lone ligand, hepatocyte growth factor(HGF), eliciting its diverse biological activities that are crucial for development and physiology. Alteration of the HGF-MET axis results in inappropriate activation of a cascade of intracellular signaling pathways that contributes to hallmark cancer events including deregulated cell proliferation and survival, angiogenesis, invasion, andmetastasis. Aberrant MET activation results from autocrine or paracrine mechanisms due to overexpression of HGF and/or MET or from a ligand-independent mechanism caused by activating mutations or amplification of MET. The literature provides compelling evidence for the role of MET signaling in cancer development and progression. The finding that cancer cells often use MET activation to escape therapies targeting other pathways strengthens the argument for MET-targeted therapeutics. Diverse strategies have been explored to deactivate MET signaling, and compounds and biologics targeting the MET pathway are in clinical development. Despite promising results from various clinical trials, we are still waiting for true MET-targeted therapeutics in the clinic. This review will explore recent progress and hurdles in the pursuit of METtargeted cancer drugs and discuss the challenges in such development.  相似文献   

12.
RON is a member of the receptor tyrosine kinase gene family that includes the MET oncogene, whose germline mutations have been causally related to human tumorigenesis. In vitro, RON and MET receptors cross-talk, synergize in intracellular signaling, and cooperate in inducing morphogenic responses. Here we show that the RON and MET oncogenes were expressed in 55% and 56% of human ovarian carcinomas, respectively, and were significantly coexpressed in 42% (P < 0.001). In ovarian carcinoma samples and cell lines we did not find mutations in RON and MET gene kinase domain, nor coexpression of RON and MET receptor ligands (MSP and HGF, respectively). We show that motility and invasiveness of ovarian cancer cells coexpressing MET and RON receptors were elicited by HGF and, to a lesser extent, by MSP. More interestingly, invasion of both reconstituted basement membrane and collagen gel was greatly enhanced by the simultaneous addition of the two ligands. These data suggest that coexpression of the MET and RON receptors confer a selective advantage to ovarian cancer cells and might promote ovarian cancer progression.  相似文献   

13.
Cancer cells with MET overexpression are paradoxically more sensitive to MET inhibition than cells with baseline MET expression. The underlying molecular mechanisms are incompletely understood. Here, we have traced early responses of SNU5, a MET-overexpressing gastric cancer cell line, exposed to sublethal concentration of PHA-665752, a selective MET inhibitor, using iTRAQ-based quantitative proteomics. More than 1900 proteins were quantified, of which >800 proteins were quantified with at least five peptides. Proteins whose expression was perturbed by PHA-665752 included oxidoreductases, transfer/carrier proteins, and signaling proteins. Strikingly, 38% of proteins whose expression was confidently assessed to be perturbed by MET inhibition were mitochondrial proteins. Upon MET inhibition by a sublethal concentration of PHA-665752, mitochondrial membrane potential increased and mitochondrial permeability transition pore was inhibited concomitant with widespread changes in mitochondrial protein expression. We also showed the presence of highly activated MET in mitochondria, and striking suppression of MET activation by 50 nm PHA-665752. Taken together, our data indicate that mitochondria are a direct target of MET kinase inhibition, in addition to plasma membrane MET. Effects on activated MET in the mitochondria of cancer cells that are sensitive to MET inhibition might constitute a novel and critical noncanonical mechanism for the efficacy of MET-targeted therapeutics.Recent improvements in survival of some malignancies owe much to advances in uncovering aberrantly active molecular pathways, against which molecularly targeted agents have been developed as new strategies to control cancers (1, 2). However, molecular mechanisms underlying the curious dependence of some cancer cells, which contain multiple genomic, genetic, and epigenetic abnormalities, on a single oncogenic molecule (the phenomenon of “oncogene addiction”) are incompletely understood (35).Receptor tyrosine kinases are the most extensively studied oncogenic targets and receptor tyrosine kinase inhibitors have proven anticancer therapeutic efficacy. A receptor tyrosine kinase, MET, whose ligand is hepatocyte growth factor (HGF), is frequently amplified and overexpressed (6, 7) in gastric cancer, the second highest cause of cancer mortality globally (8, 9). Human gastric cancer cell lines harboring MET amplicons and overexpressing MET are readily induced to apoptosis by selective inhibitors of MET (10, 11), several of which are under active development for clinical use (12). One of the selective small molecular inhibitors, PHA-665752, designed chemically as (3Z)-5-[(2,6-dichlorobenzyl)sulfonyl]-3-[(3,5-dimethyl-4-{[(2R)-2-(pyrrolidin-1-ylmethyl)pyrrolidin-1-yl]carbonyl}-1H-pyrrol-2-yl)methylene]-1,3-dihydro-2H-indol-2-one (molecule weight of 641.61), specifically suppresses tyrosine phosphorylation of MET. PHA-665752 has >50-fold higher selectivity for MET than for other tyrosine and serine/threonine kinases (13). The inhibition of MET kinase function by PHA-665752 on cancer cells had been confirmed with siRNA knockdown of MET, and a number of downstream effectors of MET signaling pathways were confirmed to be effectively abrogated by this compound (10, 13). PHA-665752 has been widely used as a potent and selective tool for the evaluation of MET-dependent cellular functions and signal transduction (10, 1423).The fact that only a subset of cancers is sensitive to killing by MET-directed therapeutics (hereafter referred to as sensitive cells) (12), raises an unexplained paradox. MET-overexpressing cancer cells could reasonably be expected to be more tolerant of MET kinase inhibition compared with cancer cells that do not overexpress MET. In reality, the opposite occurs. The underlying molecular mechanisms are incompletely understood.To investigate this paradox we undertook a systematic exploration of responses of a MET-overexpressing gastric cancer cell line, SNU5, to sublethal MET inhibition using the iTRAQ-based quantitative proteomics approach. Our results unexpectedly showed a predominant perturbation of mitochondrial proteins in response to MET inhibition. Next, we found that MET inhibition was rapidly associated with altered mitochondrial functions. These observations raised the possibility that mitochondria might be a direct target of MET inhibition. Both protein immunoblotting and confocal microscopy showed the presence of highly activated MET in the mitochondria of sensitive cancer cells. Furthermore, we observed that activating phosphorylation of tyrosine residues of mitochondrial MET was critically modulated by sublethal PHA-665752 treatment.  相似文献   

14.
Activation of the MET tyrosine kinase receptor by hepatocyte growth factor/scatter factor is classically associated with cell survival. Nonetheless, stress stimuli can lead to a caspase-dependent cleavage of MET within its juxtamembrane region, which generate a proapoptotic 40 kDa fragment (p40 MET). We report here that p40 MET is in fact generated through an additional caspase cleavage of MET within its extreme C-terminal region, which removes only few amino acids. We evidenced a hierarchical organization of these cleavages, with the C-terminal cleavage favoring the juxtamembrane one. As a functional consequence, the removal of the last amino acids of p40 MET increases its apoptotic capacity. Finally, cells expressing a MET receptor mutated at the C-terminal caspase site are unable to generate p40 MET and are resistant to apoptosis, indicating that generation of p40 MET amplifies apoptosis. These results revealed a two-step caspase cleavage of MET resulting in the reshaping of this survival receptor to a proapoptotic factor.  相似文献   

15.
The MET tyrosine kinase is the hepatocyte growth factor/scatter factor (HGF/SF) receptor, which elicits multiple biological responses in epithelial cells, including cell survival. We previously demonstrated that in stress conditions, the MET receptor is cleaved by caspases within its juxtamembrane region, generating a pro-apoptotic intracellular fragment of 40 kDa. The caspase cleavage site at aspartic acid D1000 is adjacent to tyrosine Y1001, which when phosphorylated upon MET activation, is involved in CBL recruitment, allowing receptor ubiquitination and down regulation. Scanning mutagenesis of the MET juxtamembrane region led us to demonstrate that V999 and D1000 are essential for the caspase cleavage, while D1000 and Y1001 are essential for CBL recruitment. By examining whether overlapping of these sites leads to a functional interference, an inverse relationship was found between generation of p40 MET and phosphorylation of MET, with a direct involvement of phosphorylated Y1001 in protecting MET against its caspase cleavage. A molecular modeling analysis of caspase 3 interaction with the juxtamembrane region of MET confirmed that phosphorylation of this tyrosine is not compatible with its recognition by active caspase 3. These data demonstrate a direct protection mechanism of an activated phosphorylated MET receptor, against its caspase-dependent cleavage.  相似文献   

16.
The MET tyrosine kinase, the receptor of hepatocyte growth factor-scatter factor (HGF/SF), is known to be essential for normal development and cell survival. We report that stress stimuli induce the caspase-mediated cleavage of MET in physiological cellular targets, such as epithelial cells, embryonic hepatocytes, and cortical neurons. Cleavage occurs at aspartic residue 1000 within the SVD site of the juxtamembrane region, independently of the crucial docking tyrosine residues Y1001 or Y1347 and Y1354. This cleavage generates an intracellular 40-kDa MET fragment containing the kinase domain. The p40 MET fragment itself causes apoptosis of MDCK epithelial cells and embryonic cortical neurons, whereas its kinase-dead version is impaired in proapoptotic activity. Finally, HGF/SF treatment does not favor MET cleavage and apoptosis, confirming the known survival role of ligand-activated MET. Our results show that stress stimuli convert the MET survival receptor into a proapoptotic factor.  相似文献   

17.
HGF/MET signalling protects Plasmodium-infected host cells from apoptosis   总被引:5,自引:0,他引:5  
Plasmodium, the causative agent of malaria, migrates through several hepatocytes before initiating a malaria infection. We have previously shown that this process induces the secretion of hepatocyte growth factor (HGF) by traversed cells, which renders neighbour hepatocytes susceptible to infection. The signalling initiated by HGF through its receptor MET has multifunctional effects on various cell types. Our results reveal a major role for apoptosis protection of host cells by HGF/MET signalling on the host susceptibility to infection. Inhibition of HGF/MET signalling induces a specific increase in apoptosis of infected cells leading to a great reduction on infection. Since HGF/MET signalling is capable of protecting cells from apoptosis by using both PI3-kinase/Akt and, to a lesser extent, MAPK pathways, we determined the impact of these pathways on Plasmodium sporozoite infection. Although inhibition of either of these pathways leads to a reduction in infection, inhibition of PI3-kinase/Akt pathway caused a stronger effect, which correlated with a higher level of apoptosis in infected host cells. Altogether, the results show that the HGF/MET signalling requirement for infection is mediated by its anti-apoptotic signal effects. These results demonstrate for the first time that active inhibition of apoptosis in host cell during infection by Plasmodium is required for a successful infection.  相似文献   

18.
The physiological relevance of contacts in crystal lattices often remains elusive. This was also the case for the complex between the invasion protein internalin B (InlB) from Listeria monocytogenes and its host cell receptor, the human receptor tyrosine kinase (RTK) MET. InlB is a MET agonist and induces bacterial host cell invasion. Activation of RTKs generally involves ligand‐induced dimerization of the receptor ectodomain. The two currently available crystal structures of the InlB:MET complex show the same arrangement of InlB and MET in a 1:1 complex, but different dimeric 2:2 assemblies. Only one of these 2:2 assemblies is predicted to be stable by a computational procedure. This assembly is mainly stabilized by a contact between the Cap domain of InlB from one and the Sema domain of MET from another 1:1 complex. Here, we probe the physiological relevance of this interaction. We generated variants of the leucine‐rich repeat (LRR) protein InlB by inserting an additional repeat between the first and the second LRR. This should allow formation of the 1:1 complex but disrupt the potential 2:2 complex involving the Cap‐Sema contact due to steric distortions. A crystal structure of one of the engineered proteins showed that it folded properly. Binding affinity to MET was comparable to that of wild‐type InlB. The InlB variant induced MET phosphorylation and cell scatter like wild‐type InlB. These results suggest that the Cap‐Sema interaction is not physiologically relevant and support the previously proposed assembly, in which a 2:2 InlB:MET complex is built around a ligand dimer.  相似文献   

19.
MET, the receptor for hepatocyte growth factor receptor (HGF), has been reported to trigger multiple and sometimes opposing cellular responses in various types of tumor cells. It has been implicated in the regulation of tumor-cell survival, proliferation, angiogenesis, invasion and metastasis. However, the MET regulatory mechanism in glioma is not well known. MicroRNAs are a class of small noncoding RNAs that play important roles in a variety of biological processes including human cancers. In this study, we used computational and expressional analysis to identify that the 'seed sequence' of miR-410 matched the 3' UTR of the MET mRNA. Besides, the expression of miR-410 was inversely associated with MET in human glioma tissues. Using luciferase and western blot assay, we certified that miR-410 directly targeted MET in glioma cells. While restoring expression of miR-410 led to proliferation inhibition and reduced invasive capability in glioma cells. Furthermore, we showed that miR-410 played an important role in regulating MET-induced AKT signal transduction. While downregulation of MET by RNAi, we observed that MET knockdown resulted in effects similar to that with miR-410 transfection in glioma cells. Our findings suggest that miR-410, a direct regulator of MET, may function as a tumor suppressor in human gliomas.  相似文献   

20.
Hepatocyte growth factor (HGF) activation of the MET receptor tyrosine kinase influences multiple neurodevelopmental processes. Evidence from human imaging and mouse models shows that, in the forebrain, disruptions in MET signaling alter circuit formation and function. One likely means of modulation is by controlling neuron maturation. Here, we examined the signaling mechanisms through which MET exerts developmental effects in the neocortex. In situ hybridization revealed that hgf is located near MET‐expressing neurons, including deep neocortical layers and periventricular zones. Western blot analyses of neocortical crude membranes demonstrated that HGF‐induced MET autophosphorylation peaks during synaptogenesis, with a striking reduction in activation between P14 and P17 just before pruning. In vitro analysis of postnatal neocortical neurons assessed the roles of intracellular signaling following MET activation. There is rapid, HGF‐induced phosphorylation of MET, ERK1/2, and Akt that is accompanied by two major morphological changes: increases in total dendritic growth and synapse density. Selective inhibition of each signaling pathway altered only one of the two distinct events. MAPK/ERK pathway inhibition significantly reduced the HGF‐induced increase in dendritic length, but had no effect on synapse density. In contrast, inhibition of the PI3K/Akt pathway reduced HGF‐induced increases in synapse density, with no effect on dendritic length. The data reveal a key role for MET activation during the period of neocortical neuron growth and synaptogenesis, with distinct biological outcomes mediated via discrete MET‐linked intracellular signaling pathways in the same neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1160–1181, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号