首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of dansyl-labeled glycosides with di-, tetra-, and hexasaccharides carrying the terminal N-acetyllactosamine (LacNAc) sequence were synthesized as acceptor substrates for α2,6- and α2,3-sialyltransferases. As an alternative design, dansyl-labeled LacNAc glycoside carrying a long-spacer linked glycan was engineered by replacement of the LacNAc or lactose units with an alkyl chain. In addition, we designed a dansyl-labeled bi-antennary LacNAc glycoside as an N-linked oligosaccharide mimetic, such as asialo-α1-acid glycoprotein. The kinetic parameters for the transfer reaction of synthesized dansyl-labeled glycosides by sialyltransferases were determined by the fluorescent HPLC method. The catalytic efficiencies (V max/K m) of acceptor substrates carrying the terminal LacNAc sequence with various length glycans in the array for α2,6- and α2,3-sialyltransferases decreased in a glycan length-dependent manner. Furthermore, of the acceptor substrates tested, dansyl-labeled bi-antennary LacNAc glycoside displayed the most favorable K m value for α2,6- and α2,3-sialyltransferases.  相似文献   

2.
Gaucher disease is a lysosomal storage disorder caused by deficiency of glucocerebrosidase enzymatic activity leading to accumulation of its substrate glucocerebrosidase mainly in macrophages. Skeletal disorder of Gaucher disease is the major cause of morbidity and is highly refractory to enzyme replacement therapy. However, pathological mechanisms of bone alterations in Gaucher disease are still poorly understood. We hypothesized that cellular alteration in Gaucher disease produces a proinflammatory milieu leading to bone destruction through enhancement of monocyte differentiation to osteoclasts and osteoclasts resorption activity. Against this background we decided to investigate in an in vitro chemical model of Gaucher disease, the capacity of secreted soluble mediators to induce osteoclastogenesis, and the mechanism responsible for this phenomena. We demonstrated that soluble factors produced by CBE-treated PBMC induced differentiation of osteoclasts precursors into mature and active osteoclasts that express chitotriosidase and secrete proinflammatory cytokines. We also showed a role of TNF-α in promoting osteoclastogenesis in Gaucher disease chemical model. To analyze the biological relevance of T cells in osteoclastogenesis of Gaucher disease, we investigated this process in T cell-depleted PBMC cultures. The findings suggest that T cells play a role in osteoclast formation in Gaucher disease. In conclusion, our data suggests that in vitro GCASE deficiency, along with concomitant glucosylceramide accumulation, generates a state of osteoclastogenesis mediated in part by pro-resorptive cytokines, especially TNF-α. Moreover, T cells are involved in osteoclastogenesis in Gaucher disease chemical model.  相似文献   

3.
There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1–4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1–4GlcNAcβ(CH2)8CONH(CH2)2NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1–4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1–6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1–6 bond in LacNAcβ1–6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis.  相似文献   

4.
A series of dansyl-labeled glycosides with di-, tetra-, and hexasaccharides carrying the terminal N-acetyllactosamine (LacNAc) sequence were synthesized as acceptor substrates for α2,6- and α2,3-sialyltransferases. As an alternative design, dansyl-labeled LacNAc glycoside carrying a long-spacer linked glycan was engineered by replacement of the LacNAc or lactose units with an alkyl chain. In addition, we designed a dansyl-labeled bi-antennary LacNAc glycoside as an N-linked oligosaccharide mimetic, such as asialo-α(1)-acid glycoprotein. The kinetic parameters for the transfer reaction of synthesized dansyl-labeled glycosides by sialyltransferases were determined by the fluorescent HPLC method. The catalytic efficiencies (V(max)/K(m)) of acceptor substrates carrying the terminal LacNAc sequence with various length glycans in the array for α2,6- and α2,3-sialyltransferases decreased in a glycan length-dependent manner. Furthermore, of the acceptor substrates tested, dansyl-labeled bi-antennary LacNAc glycoside displayed the most favorable K(m) value for α2,6- and α2,3-sialyltransferases.  相似文献   

5.
Carbohydrate-binding modules (CBMs) are ancillary modules commonly associated with carbohydrate-active enzymes (CAZymes) that function to mediate the adherence of the parent enzyme to its carbohydrate substrates. CBM family 32 (CBM32) is one of the most diverse CBM families, whose members are commonly found in bacterial CAZymes that modify eukaryotic glycans. One such example is the putative μ-toxin, CpGH84A, of the family 84 glycoside hydrolases, which comprises an N-terminal putative β-N-acetylglucosaminidase catalytic module and four tandem CBM32s. Here, we report a unique mode of galactose recognition by the first CBM32, CBM32-1 from CpGH84A. Solution NMR-based analyses of CpGH84A CBM32-1 indicate a divergent subset of residues, located in ordered loops at the apex of the CBM, conferring specificity for the galacto-configured sugars galactose, GalNAc, and LacNAc that differs from those of the canonical galactose-binding CBM32s. This study showcases the impressive variability in ligand binding by this CBM family and offers insight into the growing role of these modules in the interaction of CAZymes with eukaryotic glycans.  相似文献   

6.
Chitin hydrolases have been identified in a variety of organisms ranging from bacteria to eukaryotes. They have been proposed to be possible targets for the design of novel chemotherapeutics against human pathogens such as fungi and protozoan parasites as mammals were not thought to possess chitin-processing enzymes. Recently, a human chitotriosidase was described as a marker for Gaucher disease with plasma levels of the enzyme elevated up to 2 orders of magnitude. The chitotriosidase was shown to be active against colloidal chitin and is inhibited by the family 18 chitinase inhibitor allosamidin. Here, the crystal structure of the human chitotriosidase and complexes with a chitooligosaccharide and allosamidin are described. The structures reveal an elongated active site cleft, compatible with the binding of long chitin polymers, and explain the inactivation of the enzyme through an inherited genetic deficiency. Comparison with YM1 and HCgp-39 shows how the chitinase has evolved into these mammalian lectins by the mutation of key residues in the active site, tuning the substrate binding specificity. The soaking experiments with allosamidin and chitooligosaccharides give insight into ligand binding properties and allow the evaluation of differential binding and design of species-selective chitinase inhibitors.  相似文献   

7.

Introduction

Gaucher disease is caused by a deficiency of the enzyme acid beta-glucosidase. There is treatment available, but given the wide variability in phenotypes, it is difficult to establish the adequate administration and change of doses. Chitotriosidase and angiotensin converting enzyme (ACE) have been described as reliable biomarkers for the monitoring of patients. The enzymatic evaluation of these biomarkers has been traditionally made in serum or plasma samples, making difficult the monitoring of Colombian patients who live far away from big cities. Dried blood spot samples have been proposed as a solution. The aim of the present study was to validate the chitotriosidase quantification in DBS with respect to the serum determination, and to standardize a microtechnique for the quantification of serum ACE.

Results

Using a fluorometric method for the chitotriosidase quantification and a colorimetric one for ACE determinations, we found significant differences between control subjects and Gaucher patients in both serum and DBS samples. A positive correlation was observed between both kinds of samples. A reference value for the ACE determination was established. A positive correlation between chitotriosidase and ACE was found.

Conclusion

We could standardize two microtechniques for chitotriosidase and ACE analysis in serum samples. A close relation between DBS and serum samples for chitotriosidase analysis allowed us to validate DBS as a reliable sample that could facilitate the access of Colombian Gaucher patients to health services.  相似文献   

8.
Rhomboids are a remarkable class of serine proteases that are embedded in lipid membranes. These membrane-bound enzymes play key roles in cellular signaling events, and disruptions in these events can result in numerous disease pathologies, including hereditary blindness, type 2 diabetes, Parkinson's disease, and epithelial cancers. Recent crystal structures of rhomboids from Escherichia coli have focused on how membrane-bound substrates gain access to a buried active site. In E. coli, it has been shown that movements of loop 5, with smaller movements in helix 5 and loop 4, act as substrate gate, facilitating inhibitor access to rhomboid catalytic residues. Herein we present a new structure of the Haemophilus influenzae rhomboid hiGlpG, which reveals disorder in loop 5, helix 5, and loop 4, indicating that, together, they represent mobile elements of the substrate gate. Substrate cleavage assays by hiGlpG with amino acid substitutions in these mobile regions demonstrate that the flexibilities of both loop 5 and helix 5 are important for access of the substrates to the catalytic residues. Mutagenesis indicates that less mobility by loop 4 is required for substrate cleavage. A reexamination of the reaction mechanism of rhomboid substrates, whereby cleavage of the scissile bond occurs on the si-face of the peptide bond, is discussed.  相似文献   

9.
γ-Secretase is an intramembrane aspartyl protease that cleaves the amyloid precursor protein to produce neurotoxic β-amyloid peptides (i.e. Aβ42) that have been implicated in the pathogenesis of Alzheimer disease. Small molecule γ-secretase modulators (GSMs) have emerged as potential disease-modifying treatments for Alzheimer disease because they reduce the formation of Aβ42 while not blocking the processing of γ-secretase substrates. We developed clickable GSM photoaffinity probes with the goal of identifying the target of various classes of GSMs and to better understand their mechanism of action. Here, we demonstrate that the photoaffinity probe E2012-BPyne specifically labels the N-terminal fragment of presenilin-1 (PS1-NTF) in cell membranes as well as in live cells and primary neuronal cultures. The labeling is competed in the presence of the parent imidazole GSM E2012, but not with acid GSM-1, allosteric GSI BMS-708163, or substrate docking site peptide inhibitor pep11, providing evidence that these compounds have distinct binding sites. Surprisingly, we found that the cross-linking of E2012-BPyne to PS1-NTF is significantly enhanced in the presence of the active site-directed GSI L-685,458 (L458). In contrast, L458 does not affect the labeling of the acid GSM photoprobe GSM-5. We also observed that E2012-BPyne specifically labels PS1-NTF (active γ-secretase) but not full-length PS1 (inactive γ-secretase) in ANP.24 cells. Taken together, our results support the hypothesis that multiple binding sites within the γ-secretase complex exist, each of which may contribute to different modes of modulatory action. Furthermore, the enhancement of PS1-NTF labeling by E2012-BPyne in the presence of L458 suggests a degree of cooperativity between the active site of γ-secretase and the modulatory binding site of certain GSMs.  相似文献   

10.
Fourteen different active Trypanosoma congolense trans-sialidases (TconTS), 11 variants of TconTS1 besides TconTS2, TconTS3 and TconTS4, have been described. Notably, the specific transfer and sialidase activities of these TconTS differ by orders of magnitude. Surprisingly, phylogenetic analysis of the catalytic domains (CD) grouped each of the highly active TconTS together with the less active enzymes. In contrast, when aligning lectin-like domains (LD), the highly active TconTS grouped together, leading to the hypothesis that the LD of TconTS modulates its enzymatic activity. So far, little is known about the function and ligand specificity of these LDs. To explore their carbohydrate-binding potential, glycan array analysis was performed on the LD of TconTS1, TconTS2, TconTS3 and TconTS4. In addition, Saturation Transfer Difference (STD) NMR experiments were done on TconTS2-LD for a more detailed analysis of its lectin activity. Several mannose-containing oligosaccharides, such as mannobiose, mannotriose and higher mannosylated glycans, as well as Gal, GalNAc and LacNAc containing oligosaccharides were confirmed as binding partners of TconTS1-LD and TconTS2-LD. Interestingly, terminal mannose residues are not acceptor substrates for TconTS activity. This indicates a different, yet unknown biological function for TconTS-LD, including specific interactions with oligomannose-containing glycans on glycoproteins and GPI anchors found on the surface of the parasite, including the TconTS itself. Experimental evidence for such a scenario is presented.  相似文献   

11.
Rotavirus (RV) P[11] is an unique genotype that infects neonates. The mechanism of such age-specific host restriction remains unknown. In this study, we explored host mucosal glycans as a potential age-specific factor for attachment of P[11] RVs. Using in vitro binding assays, we demonstrated that VP8* of a P[11] RV (N155) could bind saliva of infants (60.3%, N = 151) but not of adults (0%, N = 48), with a significantly negative correlation between binding of VP8* and ages of infants (P<0.01). Recognition to the infant saliva did not correlate with the ABO, secretor and Lewis histo-blood group antigens (HBGAs) but with the binding of the lectin Lycopersicon esculentum (LEA) that is known to recognize the oligomers of N-acetyllactosamine (LacNAc), a precursor of human HBGAs. Direct evidence of LacNAc involvement in P[11] binding was obtained from specific binding of VP8* with homopolymers of LacNAc in variable lengths through a glycan array analysis of 611 glycans. These results were confirmed by strong binding of VP8* to the Lec2 cell line that expresses LacNAc oligomers but not to the Lec8 cell line lacking the LacNAc. In addition, N155 VP8* and authentic P[11] RVs (human 116E and bovine B223) hemagglutinated human red blood cells that are known to express poly-LacNAc. The potential role of poly-LacNAc in host attachment and infection of RVs has been obtained by abrogation of 116E replication by the PAA-conjugated poly-LacNAc, human milk, and LEA positive infant saliva. Overall, our results suggested that the poly-LacNAc could serve as an age-specific receptor for P[11] RVs and well explained the epidemiology that P[11] RVs mainly infect neonates and young children.  相似文献   

12.
Two distinct chitinases have been identified in mammals: a phagocyte-specific enzyme named chitotriosidase and an acidic mammalian chitinase (AMCase) expressed in the lungs and gastrointestinal tract. Increased expression of both chitinases has been observed in different pathological conditions: chitotriosidase in lysosomal lipid storage disorders like Gaucher disease and AMCase in asthmatic lung disease. Recently, it was reported that AMCase activity is involved in the pathogenesis of asthma in an induced mouse model. Inhibition of chitinase activity was found to alleviate the inflammation-driven pathology. We studied the tissue-specific expression of both chitinases in mice and compared it to the situation in man. In both species AMCase is expressed in alveolar macrophages and in the gastrointestinal tract. In mice, chitotriosidase is expressed only in the gastrointestinal tract, the tongue, fore-stomach, and Paneth cells in the small intestine, whereas in man the enzyme is expressed exclusively by professional phagocytes. This species difference seems to be mediated by distinct promoter usage. In conclusion, the pattern of expression of chitinases in the lung differs between mouse and man. The implications for the development of anti-asthma drugs with chitinases as targets are discussed.  相似文献   

13.
The catalytic domain of bovine alpha1-->3-galactosyltransferase (alpha3GalT), residues 80-368, have been cloned and expressed, in Escherichia coli. Using a sequential purification protocol involving a Ni(2+) affinity column followed by a UDP-hexanolamine affinity column, we have obtained a pure and active protein from the soluble fraction which catalyzes the transfer of galactose (Gal) from UDP-Gal to N-acetyllactosamine (LacNAc) with a specific activity of 0.69 pmol/min/ng. The secondary structural content of alpha3GalT protein was analyzed by Fourier transform infrared (FTIR) spectroscopy, which shows that the enzyme has about 35% beta-sheet and 22% alpha-helix. This predicted secondary structure content by FTIR spectroscopy was used in the protein sequence analysis algorithm, developed by the Biomolecular Engineering Research Center at Boston University and Tasc Inc., for the assignment of secondary structural elements to the amino acid sequence of alpha3GalT. The enzyme appears to have three major and three minor helices and five sheet-like structures. The studies on the acceptor substrate specificity of the enzyme, alpha3GalT, show that in addition to LacNAc, which is the natural substrate, the enzyme accepts various other disaccharides as substrates such as lactose and Gal derivatives, beta-O-methylgalactose and beta-D-thiogalactopyranoside, albeit with lower specific activities. There is an absolute requirement for Gal to be at the non-reducing end of the acceptor molecule which has to be beta1-->4-linked to a second residue that can be more diverse in structure. The kinetic parameters for four acceptor molecules were determined. Lactose binds and functions in a similar way as LacNAc. However, beta-O-methylgalactose and Gal do not bind as tightly as LacNAc or lactose, as their K(ia) and K(A) values indicate, suggesting that the second monosaccharide is critical for holding the acceptor molecule in place. The 2' and 4' hydroxyl groups of the receiving Gal moiety are important in binding. Even though there is large structural variability associated with the second residue of the acceptor molecule, there are constraints which do not allow certain Gal-R sugars to be good acceptors for the enzyme. The beta1-->4-linked residue at the second position of the acceptor molecule is preferred, but the interactions between the enzyme and the second residue are likely to be non-specific.  相似文献   

14.
NOD2 (nucleotide-binding oligomerization domain containing 2) functions as a pathogen sensor and is involved in development of Crohn disease, a form of inflammatory bowel disease. NOD2 functions in concert with the autophagy protein ATG16L1, which is also implicated in Crohn disease. Recently, we identified a novel protective role of ATG16L1 deficiency in uropathogenic Escherichia coli-induced urinary tract infections (UTIs), which are common infectious diseases in humans. Given the known roles of NOD2 in recruiting ATG16L1 to the bacterial entry site, autophagy induction, and Crohn disease, we hypothesized that NOD2 may also play an important role in UTI pathogenesis. Instead, we found evidence that NOD2 is dispensable in the pathogenesis of UTIs in mice and humans. First, loss of Nod2 did not affect the clearance of bacteriuria and the recruitment of innate immune cells to the bladder. Second, we showed that, although nod2 −/− mice display increased kidney abscesses in the upper urinary tract, there were no increased bacterial loads or persistence in this niche. Third, although a previous study indicates that loss of Nod2 reverses the protection from intestinal infection afforded by loss of ATG16L1 in mice, we found NOD2 deficiency did not reverse the ATG16L1-deficiency-induced protection from UTI. Finally, a population-based study of a cohort of 1819 patients did not reveal any association of NOD2 polymorphisms with UTI incidence. Together, our data indicated that NOD2 is dispensable for UTI pathogenesis in both mice and humans and does not contribute to ATG16L1-deficiency-induced resistance to UTI in mice.  相似文献   

15.
Several N-acetyllactosamine (LacNAc) derivatives were tested as acceptors for alpha 1,3-L-fucosyltransferase present in human ovarian cancer sera and ovarian tumor. The enzyme of the soluble fraction of tumor was purified to apparent homogeneity by chromatography on bovine IgG glycopeptide-Sepharose followed by Sephacryl S-200 (M(r) < 67,000). As compared with 2'-methyl LacNAc, 3'-sulfo LacNAc was about 5-fold more sensitive in measuring alpha 1,3-fucosyltransferase in sera (Km, 3'-sulfo LacNAc, 0.12 mM; 2'-methyl LacNAc, 6.67 mM). When ovarian cancer serum was the enzyme source, either the sulfate group or a sialyl moiety at C-3' of LacNAc enhanced the acceptor ability (341 and 242%, respectively), whereas the sulfate group at C-2' or C-6' reduced the activity (22-36%); sulfate at C-6 or fucose at C-2' increased the activity (172 and 253%). The beta-benzylation of the reducing end, in general, increased the activity 2-3-fold. The enzyme of the soluble fraction of tumor exhibited more activity toward 3'-sulfo LacNAc (447%), 2'-fucosyl-LacNAc (436%), and 6-sulfo LacNAc (272%). Very low activity was observed with 3'-sialyl LacNAc (12.4%), 2'-sulfo LacNAc (33%), and 6'-sulfo LacNAc (5%); Fuc alpha 1,2Gal beta 1,3GlcNAc beta-O-p-nitrophenyl (166%), 2-methyl Gal beta 1,3GlcNAc beta-O-benzyl (204%), and 3-sulfo Gal beta 1,3GlcNAc (415%) also acted as acceptors, indicating the coexistence of alpha 1,3- and alpha 1,4-fucosyltransferase. The tumor particulate enzyme behaved entirely different, exhibiting low activity with 3'-sulfo LacNAc (39%) and 2'-fucosyl-LacNAc (148%); 3'-sialyl, 6'-sulfo, 6-sulfo, or 2'-sulfo LacNAc were 3, 43, 53, and 10% active, respectively. Thus, the ovarian cancer serum alpha 1,3-fucosyltransferase acts equally well on H-type 2,3'-sialyl LacNAc and 3'-sulfo LacNAc, but not on H-type 1. The enzyme of soluble tumor fraction acts on H-type 2,3'-sulfo LacNAc as well as H-type 1 but poorly on 3'-sialyl LacNAc. The tumor particulate enzyme acts on H-type 2 but poorly on 3'-sulfo or 3'-sialyl LacNAc and is inactive with H-type 1. When normal serum was examined with synthetic acceptors, > 80% activity was found as alpha 1,2-fucosyltransferase and the rest as alpha 1,3-fucosyltransferase. A screening of 21 ovarian cancer and 3 normal sera (3'-sulfo LacNAc as acceptor) showed 17-572% increase (average increase, 188%) of alpha 1,3-fucosyltransferase activity in cancer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
An efficient synthesis of sialyllactosamine (SiaLacNAc) clusters using carbosilanes as core scaffolds has been accomplished by means of chemical and enzymatic approaches. N-Acetyl-d-glucosamine (GlcNAc) clusters having O-glycosidic linkage or S-glycosidic linkage were chemically synthesized from known intermediates in high yields. The GlcNAc clusters were first used as substrates for β1,4 galactosyl transferase using UDP-galactose (UDP-Gal) as a sugar source to provide corresponding N-acetyllactosamine clusters. Further sugar elongation of the LacNAc clusters was demonstrated using α2,3 sialyl transferase and CMP-neuraminic acid (CMP-NANA) to yield the corresponding SiaLacNAc clusters.  相似文献   

17.
Bussink AP  Vreede J  Aerts JM  Boot RG 《FEBS letters》2008,582(6):931-935
Mammals express two active chitinases, chitotriosidase and AMCase. Only AMCase displays an extremely acidic pH optimum, consistent with its observed presence in the gastro-intestinal tract. A structural model of AMCase reveals the presence of a conserved histidine residue in the active site. Mutational analyses and molecular dynamics simulations show that His187 is responsible for the acidic optimum and suggest pH dependent modulation of the reaction mechanism that is unique to AMCases. Concluding, His187 is a crucial structural component of the active site of AMCase and this unique feature may serve as a lead for the development of specific inhibitors.  相似文献   

18.
Oxidized polyvinyl alcohol hydrolase (OPH) catalyzes the cleavage of C–C bond in β-diketone. It belongs to the α/β-hydrolase family and contains a unique lid region that covers the active site. The lid is the most variable region when pOPH from Pseudomonas sp. VM15C and sOPH from Sphingopyxis sp. 113P3 are compared. The wild-type enzymes and the pOPH mutants W255A, W255Y and W255F were analyzed for lipase activity by using p-nitrophenyl (pNP) esters as the substrates. The wild-type enzymes showed increased Km and decreased kcat/Km with the acyl chain length, and the mutants showed reduced kcat/Km for pNP acetate, indicating the importance of Trp255 in sequestering the active site from solvent. The significantly lower activity for pNP butyrate can be a result of product inhibition, as suggested by the complex crystal structures, in which butyric acid, DMSO or PEG occupied the same substrate-binding cleft. The mutant activity was retained with pNP caprylate and pNP laurate as the substrates, reflecting the amphipathic nature of the cleft. Moreover, the disulfide bond formation of Cys257/267 is important for the activity of pOPH, but it is not essential for sOPH, which has a shorter lid structure.  相似文献   

19.
20.
Chitotriosidase is a chitinase that is massively expressed by lipid-laden tissue macrophages in man. Its enzymatic activity is markedly elevated in serum of patients suffering from lysosomal lipid storage disorders, sarcoidosis, thalassemia, and visceral Leishmaniasis. Monitoring of serum chitotriosidase activity in Gaucher disease patients during progression and therapeutic correction of their disease is useful to obtain insight in changes in body burden on pathological macrophages. However, accurate quantification of chitotriosidase levels by enzyme assay is complicated by apparent substrate inhibition, which prohibits the use of saturating substrate concentrations. We have therefore studied the catalytic features of chitotriosidase in more detail. It is demonstrated that the inhibition of enzyme activity at excess substrate concentration can be fully explained by transglycosylation of substrate molecules. The potential physiological consequences of the ability of chitotriosidase to hydrolyze as well as transglycosylate are discussed. The novel insight in transglycosidase activity of chitotriosidase has led to the design of a new substrate molecule, 4-methylumbelliferyl-(4-deoxy)chitobiose. With this substrate, which is no acceptor for transglycosylation, chitotriosidase shows normal Michaelis-Menten kinetics, resulting in major improvements in sensitivity and reproducibility of enzymatic activity measurements. The novel convenient chitotriosidase enzyme assay should facilitate the accurate monitoring of Gaucher disease patients receiving costly enzyme replacement therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号