首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adaptor protein c-Abl SH3 domain-binding protein-2 (3BP2, also referred to SH3BP2) regulates immune receptor-mediated signal transduction. In this report we focused on the molecular mechanism of 3BP2 function in B cell receptor (BCR) signaling. Engagement of BCR induces tyrosine phosphorylation of 3BP2. Genetic analysis demonstrated that Syk is critical for BCR-mediated tyrosine phosphorylation of 3BP2. Mutational analysis of 3BP2 revealed that both Tyr183 and Src homology 2 (SH2) domain are necessary for 3BP2-mediated BCR-induced activation of nuclear factor of activated T cells (NFAT). Point mutation of Tyr183 or Arg486 in the SH2 domain of 3BP2 diminished BCR-mediated tyrosine phosphorylation of 3BP2. Endogenous 3BP2 forms a complex with tyrosine-phosphorylated cellular signaling molecules. Peptide binding experiments demonstrated that only phosphorylated Tyr183 in 3BP2 could form a complex with the SH2 domain(s) of phospholipase Cγ2 and Vav1 from B cell lysates. These interactions were represented by using bacterial glutathione S-transferase-phospholipase Cγ2 or -Vav1 SH2 domain. Furthermore, pulldown and Far Western experiments showed that the 3BP2-SH2 domain directly binds to B cell linker protein (BLNK) after BCR stimulation. These results demonstrated that 3BP2 induces the protein complex with cellular signaling molecules through phosphorylation of Tyr183 and SH2 domain leading to the activation of NFAT in B cells.  相似文献   

2.
3.
4.
We report here the NMR-derived structure of the binary complex formed by the interleukin-2 tyrosine kinase (Itk) Src homology 3 (SH3) and Src homology 2 (SH2) domains. The interaction is independent of both a phosphotyrosine motif and a proline-rich sequence, the classical targets of the SH2 and SH3 domains, respectively. The Itk SH3/SH2 structure reveals the molecular details of this nonclassical interaction and provides a clear picture for how the previously described prolyl cis/trans isomerization present in the Itk SH2 domain mediates SH3 binding. The higher-affinity cis SH2 conformer is preorganized to form a hydrophobic interface with the SH3 domain. The structure also provides insight into how autophosphorylation in the Itk SH3 domain might increase the affinity of the intermolecular SH3/SH2 interaction. Finally, we can compare this Itk complex with other examples of SH3 and SH2 domains engaging their ligands in a nonclassical manner. These small binding domains exhibit a surprising level of diversity in their binding repertoires.  相似文献   

5.
Recruitment of the growth factor receptor-bound protein 2 (Grb2) by the plasma membrane-associated adapter protein downstream of kinase 3 (Dok-3) attenuates signals transduced by the B cell antigen receptor (BCR). Here we describe molecular details of Dok-3/Grb2 signal integration and function, showing that the Lyn-dependent activation of the BCR transducer kinase Syk is attenuated by Dok-3/Grb2 in a site-specific manner. This process is associated with the SH3 domain-dependent translocation of Dok-3/Grb2 complexes into BCR microsignalosomes and augmented phosphorylation of the inhibitory Lyn target SH2 domain-containing inositol 5′ phosphatase. Hence, our findings imply that Dok-3/Grb2 modulates the balance between activatory and inhibitory Lyn functions with the aim to adjust BCR signaling efficiency.  相似文献   

6.
The three-dimensional structure of the N-terminal SH3 domain (residues 583–660) of murine Vav, which contains a tetra-proline sequence (Pro 607-Pro 610), was determined by NMR. The solution structure of the SH3 domain shows a typical SH3 fold, but it exists in two conformations due to cis-trans isomerization at the Gly614-Pro615 bond. The NMR structure of the P615G mutant, where Pro615 is replaced by glycine, reveals that the tetra-proline region is inserted into the RT-loop and binds to its own SH3 structure. The C-terminal SH3 domain of Grb2 specifically binds to the trans form of the N-terminal SH3 domain of Vav. The surface of Vav N-terminal SH3 which binds to Grb2 C-terminal SH3 was elucidated by chemical shift mapping experiments using NMR. The surface does not involve the tetra-proline region but involves the region comprising the n-src loop, the N-terminal and the C-terminal regions. This surface is located opposite to the tetra-proline containing region, consistent with that of our previous mutagenesis studies.  相似文献   

7.
It is currently believed that inactive tyrosine kinase c-Src in platelets binds to the cytoplasmic tail of the β3 integrin subunit via its SH3 domain. Although a recent NMR study supports this contention, it is likely that such binding would be precluded in inactive c-Src because an auto-inhibitory linker physically occludes the β3 tail binding site. Accordingly, we have re-examined c-Src binding to β3 by immunoprecipitation as well as NMR spectroscopy. In unstimulated platelets, we detected little to no interaction between c-Src and β3. Following platelet activation, however, c-Src was co-immunoprecipitated with β3 in a time-dependent manner and underwent progressive activation as well. We then measured chemical shift perturbations in the 15N-labeled SH3 domain induced by the C-terminal β3 tail peptide NITYRGT and found that the peptide interacted with the SH3 domain RT-loop and surrounding residues. A control peptide whose last three residues where replaced with those of the β1 cytoplasmic tail induced only small chemical shift perturbations on the opposite face of the SH3 domain. Next, to mimic inactive c-Src, we found that the canonical polyproline peptide RPLPPLP prevented binding of the β3 peptide to the RT- loop. Under these conditions, the β3 peptide induced chemical shift perturbations similar to the negative control. We conclude that the primary interaction of c-Src with the β3 tail occurs in its activated state and at a site that overlaps with PPII binding site in its SH3 domain. Interactions of inactive c-Src with β3 are weak and insensitive to β3 tail mutations.  相似文献   

8.
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P3 (but not Ins-1,3,5-P3) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.  相似文献   

9.
Bruton's tyrosine kinase (Btk) plays a critical role in B cell Ag receptor (BCR) signaling, as indicated by the X-linked immunodeficiency and X-linked agammaglobulinemia phenotypes of mice and men that express mutant forms of the kinase. Although Btk activity can be regulated by Src-family and Syk tyrosine kinases, and perhaps by phosphatidylinositol 3,4,5-trisphosphate, BCR-coupled signaling pathways leading to Btk activation are poorly understood. In view of previous findings that CD19 is involved in BCR-mediated phosphatidylinositol 3-kinase (PI3-K) activation, we assessed its role in Btk activation. Using a CD19 reconstituted myeloma model and CD19 gene-ablated animals we found that BCR-mediated Btk activation and phosphorylation are dependent on the expression of CD19, while BCR-mediated activation of Lyn and Syk is not. Wortmannin preincubation inhibited the BCR-mediated activation and phosphorylation of Btk. Btk activation was not rescued in the myeloma by expression of a CD19 mutant in which tyrosine residues previously shown to mediate CD19 interaction with PI3-K, Y484 and Y515, were changed to phenylalanine. Taken together, the data presented indicate that BCR aggregation-driven CD19 phosphorylation functions to promote Btk activation via recruitment and activation of PI3-K. Resultant phosphatidylinositol 3,4,5-trisphosphate probably functions to localize Btk for subsequent phosphorylation and activation by Src and Syk family kinases.  相似文献   

10.
The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.  相似文献   

11.
The Plenty of SH3 domains protein (POSH) is an E3 ligase and a scaffold in the JNK mediated apoptosis, linking Rac1 to downstream components.We here describe POSH2 which was identified from a p21-activated kinase 2 (PAK2) interactor screen. POSH2 is highly homologous with other members of the POSH family; it contains four Src homology 3 (SH3) domains and a RING finger domain which confers E3 ligase activity to the protein. In addition POSH2 contains an N-terminal extension which is conserved among its mammalian counterparts. POSH2 interacts with GTP-loaded Rac1. We have mapped this interaction to a previously unrecognized partial Cdc42/Rac1-interactive binding domain.

Structured summary

MINT-7987761: POSH1 (uniprotkb:Q9HAM2) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987932: PAK2 (uniprotkb:Q13177) binds (MI:0407) to CDC42 (uniprotkb:Q07912) by solid phase assay (MI:0892)MINT-7987908: POSH1 (uniprotkb:Q9HAM2) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987880: POSH2 (uniprotkb:Q8TEJ3) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987734: POSH2 (uniprotkb:Q8TEJ3) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987779, MINT-7987804, MINT-7987824, MINT-7987838, MINT-7987853: Rac1 (uniprotkb:P63000) physically interacts (MI:0915) with POSH2 (uniprotkb:Q8TEJ3) by anti tag coimmunoprecipitation (MI:0007)MINT-7987920: PAK2 (uniprotkb:Q13177) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)  相似文献   

12.
The actin filament-associated protein AFAP-110 forms a stable complex with activated variants of Src in chick embryo fibroblast cells. Stable complex formation requires the integrity of the Src SH2 and SH3 domains. In addition, AFAP-110 encodes two adjacent SH3 binding motifs and six candidate SH2 binding motifs. These data indicate that both SH2 and SH3 domains may work cooperatively to facilitate Src/AFAP-110 stable complex formation. As a test for this hypothesis, we sought to understand whether one or both SH3 binding motifs in AFAP-110 modulate interactions with the Src SH3 domain and if this interaction was required to present AFAP-110 for tyrosine phosphorylation by, and stable complex formation with, Src. A proline to alanine site-directed mutation in the amino terminal SH3 binding motif (SH3bm I) was sufficient to abrogate absorption of AFAP-110 with GST-SH3src. Co-expression of activated Src (pp60527F) with AFAP-110 in Cos-1 cells permit tyrosine phosphorylation of AFAP-110 a nd stable complex formation with pp60527F. However, co-expression of the SH3 null-binding mutant (AFAP71A) with pp60527F revealed a 2.7 fold decrease in steady-state levels of tyrosine phosphorylation, compared to AFAP-110. Although a lower but detectable level of AFAP71A was phosphorylated on tyrosine, AFAP71A could not be detected in stable complex with pp60527F, unlike AFAP-110. These data indicate that SH3 interactions facilitate presentation of AFAP-110 for tyrosine phosphorylation and are also required for stable complex formation with pp60527F. (Mol Cell Biochem 175: 243–252, 1997)  相似文献   

13.
Activated Syk, an essential tyrosine kinase in B cell signaling, interacts with Vav guanine nucleotide exchange factors and regulates Vav activity through tyrosine phosphorylation. The Vav SH2 domain binds Syk linker B by an unusual recognition of two closely spaced Syk tyrosines: Y342 and Y346. The binding affinity is highest when both Y342 and Y346 are phosphorylated. An investigation in B cells of the dependence of Vav phosphorylation and NFAT activation on phosphorylation of Y342 and Y346 finds that cellular response levels match the relative binding affinities of the Vav1 SH2 domain for singly and doubly phosphorylated linker B peptides. This key result suggests that the uncommon recognition determinant of these two closely spaced tyrosines is a limiting factor in signaling. Interestingly, differences in affinities for binding singly and doubly phosphorylated peptides are reflected in the on rate, not the off rate. Such a control mechanism would be highly effective for regulating binding among competing Syk binding partners. The nuclear magnetic resonance (NMR) structure of Vav1 SH2 in complex with a doubly phosphorylated linker B peptide reveals diverse conformations associated with the unusual SH2 recognition of two phosphotyrosines. NMR relaxation indicates compensatory changes in loop fluctuations upon binding, with implications for nonphosphotyrosine interactions of Vav1 SH2.  相似文献   

14.
The BCR serves as both signal transducer and Ag transporter. Binding of Ags to the BCR induces signaling cascades and Ag processing and presentation, two essential cellular events for B cell activation. BCR-initiated signaling increases BCR-mediated Ag-processing efficiency by increasing the rate and specificity of Ag transport. Previous studies showed a critical role for the actin cytoskeleton in these two processes. In this study, we found that actin-binding protein 1 (Abp1/HIP-55/SH3P7) functioned as an actin-binding adaptor protein, coupling BCR signaling and Ag-processing pathways with the actin cytoskeleton. Gene knockout of Abp1 and overexpression of the Src homology 3 domain of Abp1 inhibited BCR-mediated Ag internalization, consequently reducing the rate of Ag transport to processing compartments and the efficiency of BCR-mediated Ag processing and presentation. BCR activation induced tyrosine phosphorylation of Abp1 and translocation of both Abp1 and dynamin 2 from the cytoplasm to plasma membrane, where they colocalized with the BCR and cortical F-actin. Mutations of the two tyrosine phosphorylation sites of Abp1 and depolymerization of the actin cytoskeleton interfered with BCR-induced Abp1 recruitment to the plasma membrane. The inhibitory effect of a dynamin proline-rich domain deletion mutant on the recruitment of Abp1 to the plasma membrane, coimmunoprecipitation of dynamin with Abp1, and coprecipitation of Abp1 with GST fusion of the dyanmin proline-rich domain demonstrate the interaction of Abp1 with dynamin 2. These results demonstrate that the BCR regulates the function of Abp1 by inducing Abp1 phosphorylation and actin cytoskeleton rearrangement, and that Abp1 facilitates BCR-mediated Ag processing by simultaneously interacting with dynamin and the actin cytoskeleton.  相似文献   

15.
Integrins regulate cell adhesion and motility through tyrosine kinases, but initiation of this process is poorly understood. We find here that Src associates constitutively with integrin alphaIIbbeta3 in platelets. Platelet adhesion to fibrinogen caused a rapid increase in alphaIIbbeta3-associated Src activity, and active Src localized to filopodia and cell edges. Csk, which negatively regulates Src by phosphorylating Tyr-529, was also constitutively associated with alphaIIbbeta3. However, fibrinogen binding caused Csk to dissociate from alphaIIbbeta3, concomitant with dephosphorylation of Src Tyr-529 and phosphorylation of Src activation loop Tyr-418. In contrast to the behavior of Src and Csk, Syk was associated with alphaIIbbeta3 only after fibrinogen binding. Platelets multiply deficient in Src, Hck, Fgr, and Lyn, or normal platelets treated with Src kinase inhibitors failed to spread on fibrinogen. Inhibition of Src kinases blocked Syk activation and inhibited phosphorylation of Syk substrates (Vav1, Vav3, SLP-76) implicated in cytoskeletal regulation. Syk-deficient platelets exhibited Src activation upon adhesion to fibrinogen, but no spreading or phosphorylation of Vav1, Vav3, and SLP-76. These studies establish that platelet spreading on fibrinogen requires sequential activation of Src and Syk in proximity to alphaIIbbeta3, thus providing a paradigm for initiation of integrin signaling to the actin cytoskeleton.  相似文献   

16.

Background

Vav proteins are guanine nucleotide exchange factors (GEF) for Rho family GTPases and are activated following engagement of membrane receptors. Overexpression of Vav proteins enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of multiple structural domains that mediate their GEF function and binding interactions with many cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity.

Results

We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation.

Conclusion

Our results indicate that increased migration of active Vav1 expressing cells is dependent on Vav1 GEF activity and secretion of an EGF receptor ligand. In addition, activation of ERK downstream of Vav1 is dependent on autocrine EGF receptor stimulation while active Vav1 can stimulate Rac1 and PAK activation independent of ligand binding to the EGF receptor. Thus, stimulation of migration by activated Vav1 involves both EGF receptor-dependent and independent activities induced through the Rho GEF domain of Vav1.  相似文献   

17.
Activation of Akt by multiple stimuli including B cell antigen receptor (BCR) engagement requires phosphatidylinositol 3-kinase and regulates processes including cell survival, proliferation, and metabolism. BCR cross-linking activates three families of non-receptor protein tyrosine kinases (PTKs) and these are transducers of signaling events including phospholipase C and mitogen-activated protein kinase activation; however, the relative roles of PTKs in BCR-mediated Akt activation are unknown. We examined Akt activation in Lyn-, Syk- and Btk-deficient DT40 cells and B cells from Lyn(-/-) mice. BCR-mediated Akt activation required Syk and was partially dependent upon Btk. Increased BCR-induced Akt phosphorylation was observed in Lyn-deficient DT40 cells and Lyn(-/-) mice compared with wild-type cells suggesting that Lyn may negatively regulate Akt function. BCR-induced tyrosine phosphorylation of the phosphatidylinositol 3-kinase catalytic subunit was abolished in Syk-deficient cells consistent with a receptor-proximal role for Syk in BCR-mediated phosphatidylinositol 3-kinase activation; in contrast, it was maintained in Btk-deficient cells, suggesting Btk functions downstream of phosphatidylinositol 3-kinase. Calcium depletion did not influence BCR-induced Akt phosphorylation/activation, showing that neither Syk nor Btk mediates its effects via changes in calcium levels. Thus, BCR-mediated Akt stimulation is regulated by multiple non-receptor PTK families which regulate Akt both proximal and distal to phosphatidylinositol 3-kinase activation.  相似文献   

18.
The guanine nucleotide exchange factor (GEF) Vav1 plays an important role in T-cell activation and tumorigenesis. In the GEF superfamily, Vav1 has the ability to interact with multiple families of Rho GTPases. The structure of the Vav1 DH-PH-CRD/Rac1 complex to 2.6 Å resolution reveals a unique intramolecular network of contacts between the Vav1 cysteine-rich domain (CRD) and the C-terminal helix of the Vav1 Dbl homology (DH) domain. These unique interactions stabilize the Vav1 DH domain for its intimate association with the Switch II region of Rac1 that is critical for the displacement of the guanine nucleotide. Small angle x-ray scattering (SAXS) studies support this domain arrangement for the complex in solution. Further, mutational analyses confirms that the atypical CRD is critical for maintaining both optimal guanine nucleotide exchange activity and broader specificity of Vav family GEFs. Taken together, the data outline the detailed nature of Vav1's ability to contact a range of Rho GTPases using a novel protein-protein interaction network.  相似文献   

19.
Adaptor proteins that do not contain intrinsic enzymatic activity play a critical role in cell biology by regulating the assembly of large multimolecular signaling complexes involved in extracellular signal transduction. The increasing number of diseases associated with aberrant function or expression of adaptor proteins further illustrate their key role in cellular regulation. The adaptor 3BP2 (or SH3BP2) was originally identified more than 10 years ago as an c-Abl binding protein, and next as a partner of Syk family kinases in 1998. 3BP2 displays the typical modular organization of an adapter protein with an amino-terminal PH domain, a central proline rich region and a carboxyl-terminal SH2 domain. Although its physiological function remains unknown, studies have implicated a role for 3BP2 in immunoreceptor signaling through its interaction with a number of signaling molecules including Src and Syk families of protein tyrosine kinases, the membrane adaptor LAT, Vav exchange factors, PLC-gamma, and 14-3-3 proteins. Recently, the 3bp2/sh3bp2 locus was shown to be mutated in a rare human disease involved in cranial-facial development called cherubism, suggesting a role for 3BP2 in regulating osteoclast and hematopoietic cell function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号