首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   

2.
MutY homologue (MYH) is a DNA glycosylase which excises adenine paired with the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG, or Go) during base excision repair (BER). Base excision by MYH results in an apurinic/apyrimidinic (AP) site in the DNA where the DNA sugar–phosphate backbone remains intact. A key feature of MYH activity is its physical interaction and coordination with AP endonuclease I (APE1), which subsequently nicks DNA 5′ to the AP site. Because AP sites are mutagenic and cytotoxic, they must be processed by APE1 immediately after the action of MYH glycosylase. Our recent reports show that the interdomain connector (IDC) of human MYH (hMYH) maintains interactions with hAPE1 and the human checkpoint clamp Rad9–Rad1–Hus1 (9–1–1) complex. In this study, we used NMR chemical shift perturbation experiments to determine hMYH-binding site on hAPE1. Chemical shift perturbations indicate that the hMYH IDC peptide binds to the DNA-binding site of hAPE1 and an additional site which is distal to the APE1 DNA-binding interface. In these two binding sites, N212 and Q137 of hAPE1 are key mediators of the MYH/APE1 interaction. Intriguingly, despite the fact that hHus1 and hAPE1 both interact with the MYH IDC, hHus1 does not compete with hAPE1 for binding to hMYH. Rather, hHus1 stabilizes the hMYH/hAPE1 complex both in vitro and in cells. This is consistent with a common theme in BER, namely that the assembly of protein–DNA complexes enhances repair by efficiently coordinating multiple enzymatic steps while simultaneously minimizing the release of harmful repair intermediates.  相似文献   

3.
Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase. We show here that the major Schizosaccharomyces pombe AP endonuclease, Apn2, binds to the inter-domain connector located between the N- and C-terminal domains of Myh1. This Myh1 inter-domain connector also interacts with the Hus1 subunit of the Rad9–Rad1–Hus1 checkpoint clamp. Mutagenesis studies indicate that Apn2 and Hus1 bind overlapping but different sequence motifs on Myh1. Mutation on I261 of Myh1 reduces its interaction with Hus1, but only slightly attenuates its interaction with Apn2. However, E262 of Myh1 is a key determinant for both Apn2 and Hus1 interactions. Like human APE1, Apn2 has 3′-phosphodiesterase activity. However, unlike hAPE1, Apn2 has a weak AP endonuclease activity which cleaves the AP sites generated by Myh1 glycosylase. Functionally, Apn2 stimulates Myh1 glycosylase activity and Apn2 phosphodiesterase activity is stimulated by Myh1. The cross stimulation of Myh1 and Apn2 enzymatic activities is dependent on their physical interaction. Thus, Myh1 and Apn2 constitute an initial BER complex.  相似文献   

4.
A role for p53 in base excision repair   总被引:22,自引:0,他引:22  
Wild-type p53 protein can markedly stimulate base excision repair (BER) in vitro, either reconstituted with purified components or in extracts of cells. In contrast, p53 with missense mutations either at hot-spots in the core domain or within the N-terminal transactivation domain is defective in this function. Stimulation of BER by p53 is correlated with its ability to interact directly both with the AP endonuclease (APE) and with DNA polymerase beta (pol beta). Furthermore, p53 stabilizes the interaction between DNA pol beta and abasic DNA. Evidence that this function of p53 is physiologically relevant is supported by the facts that BER activity in human and murine cell extracts closely parallels their levels of endogenous p53, and that BER activity is much reduced in cell extracts immunodepleted of p53. These data suggest a novel role for p53 in DNA repair, which could contribute to its function as a key tumor suppressor.  相似文献   

5.
Base excision repair (BER) is a major DNA repair pathway employed in mammalian cells that is required to maintain genome stability, thus preventing several human diseases, such as ageing, neurodegenerative diseases and cancer. This is achieved through the repair of damaged DNA bases, sites of base loss and single strand breaks of varying complexity that are continuously induced endogenously or via exogenous mutagens. Whilst the enzymes involved in BER are now well known and characterised, the role of the co-ordination of BER enzymatic activities in the cellular response to DNA damage and the mechanisms regulating this process are only now being revealed. Post-translational modifications of BER proteins, including ubiquitylation and phosphorylation, are increasingly being identified as key processes that regulate BER. In this review we will summarise recent evidence discovering novel mechanisms that are involved in maintaining genome stability by regulation of the key BER proteins in response to DNA damage.  相似文献   

6.
Dynamics of DNA methylation and demethylation at CpG clusters are involved in gene regulation. CpG clusters have been identified as hot spots of mutagenesis because of their susceptibility to oxidative DNA damage. Damaged Cs and Gs at CpGs can disrupt a normal DNA methylation pattern through modulation of DNA methylation and demethylation, leading to mutations and deregulation of gene expression. DNA base excision repair (BER) plays a dual role of repairing oxidative DNA damage and mediating an active DNA demethylation pathway on CpG clusters through removal of a T/G mismatch resulting from deamination of a 5mC adjacent to a guanine that can be simultaneously damaged by oxidative stress. However, it remains unknown how BER processes clustered lesions in CpGs and what are the consequences from the repair of these lesions. In this study, we examined BER of an abasic lesion next to a DNA demethylation intermediate, the T/G mismatch in a CpG dinucleotide, and its effect on the integrity of CpGs. Surprisingly, we found that the abasic lesion completely abolished the activity of thymine DNA glycosylase (TDG) for removing the mismatched T. However, we found that APE1 could still efficiently incise the abasic lesion leaving a 3-terminus mismatched T, which was subsequently extended by pol β. This in turn resulted in a C to T transition mutation. Interestingly, we also found that APE1 3′–5′ exonuclease activity efficiently removed the mismatched T, thereby preventing pol β extension of the mismatched nucleotide and the resulting mutation. Our results demonstrate a crucial role of APE1 3′–5′ exonuclease activity in combating mutations in CpG clusters caused by an intermediate of DNA demethylation during BER.  相似文献   

7.
Base excision repair (BER) is an essential cellular defence mechanism against DNA damage, but it is poorly understood in plants. We used an assay that monitors repair of damaged bases and abasic (apurinic/apyrimidinic, AP) sites in Arabidopsis to characterize post-excision events during plant BER. We found that Apurinic endonuclease-redox protein (ARP) is the major AP endonuclease activity in Arabidopsis cell extracts, and is required for AP incision during uracil BER in vitro. Mutant plants that are deficient in ARP grow normally but are hypersensitive to 5-fluorouracil, a compound that favours mis-incorporation of uracil into DNA. We also found that, after AP incision, the choice between single-nucleotide or long-patch DNA synthesis (SN- or LP-BER) is influenced by the 5' end of the repair gap. When the 5' end is blocked and not amenable to β-elimination, the SN sub-pathway is abrogated, and repair is accomplished through LP-BER only. Finally, we provide evidence that Arabidopsis DNA ligase I (LIG1) is required for both SN- and LP-BER. lig1 RNAi-silenced lines show very reduced uracil BER, and anti-LIG1 antibody abolishes repair in wild-type cell extracts. In contrast, knockout lig4(-/-) mutants exhibit normal BER and nick ligation levels. Our results suggest that a branched BER pathway completed by a member of the DNA ligase I family may be an ancient feature in eukaryotic species.  相似文献   

8.
Pygopus 2 (Pygo2/PYGO2) is an evolutionarily conserved coactivator and chromatin effector in the Wnt/β-catenin signaling pathway that regulates cell growth and differentiation in various normal and malignant tissues. Although PYGO2 is highly overexpressed in a number of human cancers, the molecular mechanism underlying its deregulation is largely unknown. Here we report that Pygo2 protein is degraded through the ubiquitin/proteasome pathway and is posttranslationally stabilized through phosphorylation by activated phosphatidylinositol 3-kinase/Akt signaling. Specifically, Pygo2 is stabilized upon inhibition of the proteasome, and its intracellular level is regulated by Cullin 4 (Cul4) and DNA damage-binding protein 1 (DDB1), components of the Cul4-DDB1 E3 ubiquitin ligase complex. Furthermore, Pygo2 is phosphorylated at multiple residues, and Akt-mediated phosphorylation at serine 48 leads to its decreased ubiquitylation and increased stability. Finally, we provide evidence that Akt and its upstream growth factors act in parallel with Wnt to stabilize Pygo2. Taken together, our findings highlight chromatin regulator Pygo2 as a common node downstream of oncogenic Wnt and Akt signaling pathways and underscore posttranslational modification, particularly phosphorylation and ubiquitylation, as a significant mode of regulation of Pygo2 protein expression.  相似文献   

9.
Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G·T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.  相似文献   

10.
Non-coding apurinic/apyrimidinic (AP) sites are generated at high frequency in genomic DNA via spontaneous hydrolytic, damage-induced or enzyme-mediated base release. AP endonuclease 1 (APE1) is the predominant mammalian enzyme responsible for initiating removal of mutagenic and cytotoxic abasic lesions as part of the base excision repair (BER) pathway. We have examined here the ability of wild-type (WT) and a collection of variant/mutant APE1 proteins to cleave at an AP site within a nucleosome core particle. Our studies indicate that, in comparison to the WT protein and other variant/mutant enzymes, the incision activity of the tumor-associated variant R237C and the rare population variant G241R are uniquely hypersensitive to nucleosome complexes in the vicinity of the AP site. This defect appears to stem from an abnormal interaction of R237C and G241R with abasic DNA substrates, but is not simply due to a DNA binding defect, as the site-specific APE1 mutant Y128A, which displays markedly reduced AP-DNA complex stability, did not exhibit a similar hypersensitivity to nucleosome structures. Notably, this incision defect of R237C and G241R was observed on a pre-assembled DNA glycosylase·AP-DNA complex as well. Our results suggest that the BER enzyme, APE1, has acquired distinct surface residues that permit efficient processing of AP sites within the context of protein-DNA complexes independent of classic chromatin remodeling mechanisms.  相似文献   

11.
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.  相似文献   

12.
维持基因组稳定是生物生存的基础。碱基切除修复(base excision repair,BER)是修复损伤DNA、维持基因组稳定的主要方式之一。碱基切除修复对结核分枝杆菌等胞内致病菌尤其重要。fpg编码碱基切除修复的关键酶。本文通过比较分枝杆菌的基因组,发现结核菌较其他非致病分枝杆菌具有更多的碱基切除修复基因。这提示碱基切除修复可能对结核菌在宿主体内存活和致病至关重要。这条途径也许是新结核病药物研发的重要靶标。  相似文献   

13.
The budding yeast proteins Dma1 and Dma2 are members of the unique FHA-RING domain protein family and are linked to mitotic regulation and septin organization by ill-defined mechanisms. We show that Dma2 has ubiquitin ligase activity, and that septins Shs1 and Cdc11 are likely direct in vivo targets. We further propose that human RNF8, rather than Chfr, is the mammalian Dma homolog. As in yeast, RNF8 localizes to the centrosomes and cell division sites and promotes ubiquitylation of the septin SEPT7, whose depletion increases cell division anomalies. Together, these findings reveal evolutionary and functional conservation of Dma proteins, and suggest that RNF8 maintains genome stability through independent, yet analogous, nuclear and cytoplasmic ubiquitylation activities.  相似文献   

14.
An Q  Robins P  Lindahl T  Barnes DE 《The EMBO journal》2005,24(12):2205-2213
The most common genetic change in aerobic organisms is a C:G to T:A mutation. C --> T transitions can arise through spontaneous hydrolytic deamination of cytosine to give a miscoding uracil residue. This is also a frequent DNA lesion induced by oxidative damage, through exposure to agents such as ionizing radiation, or from endogenous sources that are implicated in the aetiology of degenerative diseases, ageing and cancer. The Ung and Smug1 enzymes excise uracil from DNA to effect repair in mammalian cells, and gene-targeted Ung(-/-) mice exhibit a moderate increase in genome-wide spontaneous mutagenesis. Here, we report that stable siRNA-mediated silencing of Smug1 in mouse embryo fibroblasts also generates a mutator phenotype. However, an additive 10-fold increase in spontaneous C:G to T:A transitions in cells deficient in both Smug1 and Ung demonstrates that these enzymes have distinct and nonredundant roles in suppressing C --> T mutability at non-CpG sites. Such cells are also hypersensitive to ionizing radiation, and reveal a role of Smug1 in the repair of lesions generated by oxidation of cytosine.  相似文献   

15.
Since its discovery as a post-translational signal for protein degradation, our understanding of ubiquitin (Ub) has vastly evolved. Today, we recognize that the role of Ub signaling is expansive and encompasses diverse processes including cell division, the DNA damage response, cellular immune signaling, and even organismal development. With such a wide range of functions comes a wide range of regulatory mechanisms that control the activity of the ubiquitylation machinery. Ub attachment to substrates occurs through the sequential action of three classes of enzymes, E1s, E2s, and E3s. In humans, there are 2 E1s, ∼35 E2s, and hundreds of E3s that work to attach Ub to thousands of cellular substrates. Regulation of ubiquitylation can occur at each stage of the stepwise Ub transfer process, and substrates can also impact their own modification. Recent studies have revealed elegant mechanisms that have evolved to control the activity of the enzymes involved. In this minireview, we highlight recent discoveries that define some of the various mechanisms by which the activities of E3-Ub ligases are regulated.  相似文献   

16.
The base excision repair (BER) pathway is mainly responsible for the repair of a vast number of non-bulky lesions produced by alkylation, oxidation or deamination of bases. DNA glycosylases are the key enzymes that recognize damaged bases and initiate BER by catalyzing the cleavage of the N-glycosylic bond between the base and the sugar. Many of the mammalian DNA glycosylases have been identified by a combination of biochemical and bioinformatics analysis. Thus, a mammalian family of three proteins (NEIL1, NEIL2 and NEIL3) that showed homology to the Escherichia coli Fpg/Nei DNA glycosylases was identified. Two of the proteins, NEIL1 and NEIL2 have been thoroughly characterized and shown to initiate BER of a diverse number of oxidized lesions. However, much less is known about NEIL3. The biochemical properties of NEIL3 have not been elucidated. This is mainly due to the difficulty in the expression and purification of NEIL3. Here, we describe the expression and partial purification of full-length human NEIL3 and the expression, purification and characterization of a truncated human core-NEIL3 (amino acids 1–301) that contains the complete E. coli Fpg/Nei-like domain but lacks the C-terminal region.  相似文献   

17.
We describe a method for the quantitative, real-time measurement of DNA glycosylase and AP endonuclease activities in cell nuclear lysates using base excision repair (BER) molecular beacons. The substrate (beacon) is comprised of a deoxyoligonucleotide containing a single base lesion with a 6-Carboxyfluorescein (6-FAM) moiety conjugated to the 5''end and a Dabcyl moiety conjugated to the 3'' end of the oligonucleotide. The BER molecular beacon is 43 bases in length and the sequence is designed to promote the formation of a stem-loop structure with 13 nucleotides in the loop and 15 base pairs in the stem1,2. When folded in this configuration the 6-FAM moiety is quenched by Dabcyl in a non-fluorescent manner via Förster Resonance Energy Transfer (FRET)3,4. The lesion is positioned such that following base lesion removal and strand scission the remaining 5 base oligonucleotide containing the 6-FAM moiety is released from the stem. Release and detachment from the quencher (Dabcyl) results in an increase of fluorescence that is proportionate to the level of DNA repair. By collecting multiple reads of the fluorescence values, real-time assessment of BER activity is possible. The use of standard quantitative real-time PCR instruments allows the simultaneous analysis of numerous samples. The design of these BER molecular beacons, with a single base lesion, is amenable to kinetic analyses, BER quantification and inhibitor validation and is adaptable for quantification of DNA Repair activity in tissue and tumor cell lysates or with purified proteins. The analysis of BER activity in tumor lysates or tissue aspirates using these molecular beacons may be applicable to functional biomarker measurements. Further, the analysis of BER activity with purified proteins using this quantitative assay provides a rapid, high-throughput method for the discovery and validation of BER inhibitors.  相似文献   

18.
Tribbles homolog 2 (TRIB2) is functionally important for liver cancer cell survival and transformation. Our previous study demonstrates TRIB2 is stable in liver cancer cells due to the impaired ubiquitination by Smurf1. However, overexpression of Smurf1 alone cannot completely abolish TRIB2 protein expression, whether other potential factors involved in the degradation of TRIB2 still remains unclear. In the present study, we reveal that the stability and ubiquitination of TRIB2 can also be controlled by ubiquitin E3 ligase SCFβ-TRCP. Depletion of either Cullin1 or β-TRCP up-regulates TRIB2 protein expression. Moreover, knockdown of β-TRCP extends the half-life, whereas reduces ubiquitylation of TRIB2. Similar to Smurf1, β-TRCP exerts its role through the TRIB2 Degradation Domain (TDD) at the N-terminus of the TRIB2 protein. Hence, we add TRIB2 to the substrate list of SCFβ-TRCP and the finding may be helpful in the treatment of TRIB2 dependent liver cancer.  相似文献   

19.
The base excision repair (BER) pathway involves gap filling by DNA polymerase (pol) β and subsequent nick sealing by ligase IIIα. X-ray cross-complementing protein 1 (XRCC1), a nonenzymatic scaffold protein, assembles multiprotein complexes, although the mechanism by which XRCC1 orchestrates the final steps of coordinated BER remains incompletely defined. Here, using a combination of biochemical and biophysical approaches, we revealed that the polβ/XRCC1 complex increases the processivity of BER reactions after correct nucleotide insertion into gaps in DNA and enhances the handoff of nicked repair products to the final ligation step. Moreover, the mutagenic ligation of nicked repair intermediate following polβ 8-oxodGTP insertion is enhanced in the presence of XRCC1. Our results demonstrated a stabilizing effect of XRCC1 on the formation of polβ/dNTP/gap DNA and ligase IIIα/ATP/nick DNA catalytic ternary complexes. Real-time monitoring of protein–protein interactions and DNA-binding kinetics showed stronger binding of XRCC1 to polβ than to ligase IIIα or aprataxin, and higher affinity for nick DNA with undamaged or damaged ends than for one nucleotide gap repair intermediate. Finally, we demonstrated slight differences in stable polβ/XRCC1 complex formation, polβ and ligase IIIα protein interaction kinetics, and handoff process as a result of cancer-associated (P161L, R194W, R280H, R399Q, Y576S) and cerebellar ataxia-related (K431N) XRCC1 variants. Overall, our findings provide novel insights into the coordinating role of XRCC1 and the effect of its disease-associated variants on substrate-product channeling in multiprotein/DNA complexes for efficient BER.  相似文献   

20.
Human 3-methyladenine-DNA glycosylase (MPG protein) is involved in the base excision repair (BER) pathway responsible mainly for the repair of small DNA base modifications. It initiates BER by recognizing DNA adducts and cleaving the glycosylic bond leaving an abasic site. Here, we explore several of the factors that could influence excision of adducts recognized by MPG, including sequence context, effect of APE1, and interaction with other proteins. To investigate sequence context, we used 13 different 25 bp oligodeoxyribonucleotides containing a unique hypoxanthine residue (Hx) and show that the steady-state specificity of Hx excision by MPG varied by 17-fold. If APE1 protein is used in the reaction for Hx removal by MPG, the steady-state kinetic parameters increase by between fivefold and 27-fold, depending on the oligodeoxyribonucleotide. Since MPG has a role in removing adducts such as 3-methyladenine that block DNA synthesis and there is a potential sequence for proliferating cell nuclear antigen (PCNA) interaction, we hypothesized that MPG protein could interact with PCNA, a protein involved in repair and replication. We demonstrate that PCNA associates with MPG using immunoprecipitation with either purified proteins or whole cell extracts. Moreover, PCNA binds to both APE1 and MPG at different sites, and loading PCNA onto a nicked, closed circular substrate with a unique Hx residue enhances MPG catalyzed excision. These data are consistent with an interaction that facilitates repair by MPG or APE1 by association with PCNA. Thus, PCNA could have a role in short-patch BER as well as in long-patch BER. Overall, the data reported here show how multiple factors contribute to the activity of MPG in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号