首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
Wang Z  Chen T  Ma X  Shen Z  Zhao X 《Bioresource technology》2011,102(4):3934-3940
Zwf (code for glucose-6-phosphate dehydrogenase) and gnd (code for 6-phosphogluconate dehydrogenase) genes from Corynebacterium glutamicum were firstly cloned, and then site-directed mutagenesis was successfully introduced to remove allosteric inhibition by intracellular metabolites. Expression of the mutant zwf and gnd in Bacillus subtilis RH33 resulted in significant enhancement of riboflavin productivity, while the specific growth rate decreased slightly and the specific glucose uptake rate was unchanged. Introduction of the mutant zwf and gnd led to approximately 18% and 22% increased riboflavin production, respectively. An improvement by 31% and 39% of the riboflavin production was obtained by co-expression of the mutated dehydrogenases in shaker flask and fed-batch cultivation. Intracellular metabolites analysis indicated that metabolites detected in pentose phosphate pathway or riboflavin synthesis pathway of engineered strains showed higher concentration, while TCA cycle and glycolysis metabolites detected were lower abundance than that of parent strain.  相似文献   

4.
Since genome analysis did not allow unambiguous reconstruction of transport, catabolism, and substrate-specific regulation for several important carbohydrates in Phaeobacter inhibens DSM 17395, proteomic and metabolomic analyses of N-acetylglucosamine-, mannitol-, sucrose-, glucose-, and xylose-grown cells were carried out to close this knowledge gap. These carbohydrates can pass through the outer membrane via porins identified in the outer membrane fraction. For transport across the cytoplasmic membrane, carbohydrate-specific ABC transport systems were identified. Their coding genes mostly colocalize with the respective “catabolic” and “regulatory” genes. The degradation of N-acetylglucosamine proceeds via N-acetylglucosamine-6-phosphate and glucosamine-6-phosphate directly to fructose-6-phosphate; two of the three enzymes involved were newly predicted and identified. Mannitol is catabolized via fructose, sucrose via fructose and glucose, glucose via glucose-6-phosphate, and xylose via xylulose-5-phosphate. Of the 30 proteins predicted to be involved in uptake, regulation, and degradation, 28 were identified by proteomics and 19 were assigned to their respective functions for the first time. The peripheral degradation pathways feed into the Entner-Doudoroff (ED) pathway, which is connected to the lower branch of the Embden-Meyerhof-Parnas (EMP) pathway. The enzyme constituents of these pathways displayed higher abundances in P. inhibens DSM 17395 cells grown with any of the five carbohydrates tested than in succinate-grown cells. Conversely, gluconeogenesis is turned on during succinate utilization. While tricarboxylic acid (TCA) cycle proteins remained mainly unchanged, the abundance profiles of their metabolites reflected the differing growth rates achieved with the different substrates tested. Homologs of the 74 genes involved in the reconstructed catabolic pathways and central metabolism are present in various Roseobacter clade members.  相似文献   

5.
Arthrospira (Spirulina) platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A. platensis NIES-39 including 746 metabolic reactions and 673 metabolites, and developed novel strategies to improve the production of valuable metabolites, such as glycogen and ethanol. The simulation results obtained using the metabolic model showed high consistency with experimental results for growth rates under several trophic conditions and growth capabilities on various organic substrates. The metabolic model was further applied to design a metabolic network to improve the autotrophic production of glycogen and ethanol. Decreased flux of reactions related to the TCA cycle and phosphoenolpyruvate reaction were found to improve glycogen production. Furthermore, in silico knockout simulation indicated that deletion of genes related to the respiratory chain, such as NAD(P)H dehydrogenase and cytochrome-c oxidase, could enhance ethanol production by using ammonium as a nitrogen source.  相似文献   

6.
This report describes the metabolic and lipidomic profiling of 97 low-molecular weight compounds from the primary metabolism and 124 lipid compounds of the diatom Thalassiosira pseudonana. The metabolic profiles were created for diatoms perturbed for 24 hours with four different treatments: (I) removal of nitrogen, (II) lower iron concentration, (III) addition of sea salt, (IV) addition of carbonate to their growth media. Our results show that as early as 24 hours after nitrogen depletion significant qualitative and quantitative change in lipid composition as well as in the primary metabolism of Thalassiosira pseudonana occurs. So we can observe the accumulation of several storage lipids, namely triacylglycerides, and TCA cycle intermediates, of which citric acid increases more than 10-fold. These changes are positively correlated with expression of TCA enzymes genes. Next to the TCA cycle intermediates and storage lipid changes, we have observed decrease in N-containing lipids and primary metabolites such as amino acids. As a measure of counteracting nitrogen starvation, we have observed elevated expression levels of nitrogen uptake and amino acid biosynthetic genes. This indicates that diatoms can fast and efficiently adapt to changing environment by altering the metabolic fluxes and metabolite abundances. Especially, the accumulation of proline and the decrease of dimethylsulfoniopropionate suggest that the proline is the main osmoprotectant for the diatom in nitrogen rich conditions.  相似文献   

7.
Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-13CFru]sucrose, [1-13CGlc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTSMan or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.  相似文献   

8.
We conducted an integrated study of cell growth parameters, product formation, and the dynamics of intracellular metabolite concentrations using Escherichia coli with genes knocked out in the glycolytic and oxidative pentose phosphate pathway (PPP) for glucose catabolism. We investigated the same characteristics in the wild-type strain, using acetate or pyruvate as the sole carbon source. Dramatic effects on growth parameters and extracellular and intracellular metabolite concentrations were observed after blocking either glycolytic breakdown of glucose by inactivation of phosphoglucose isomerase (disruption of pgi gene) or pentose phosphate breakdown of glucose by inactivation of glucose-6-phosphate dehydrogenase (disruption of zwf gene). Reducing power (NADPH) was mainly produced through PPP when the pgi gene was knocked out, while NADPH was produced through the tricarboxylic acid (TCA) cycle by isocitrate dehydrogenase or NADP-linked malic enzyme when the zwf gene was knocked out. As expected, when the pgi gene was knocked out, intracellular concentrations of PPP metabolites were high and glycolytic and concentrations of TCA cycle pathway metabolites were low. In the zwf gene knockout, concentrations of PPP metabolites were low and concentrations of intracellular glycolytic and TCA cycle metabolites were high.  相似文献   

9.
10.
The onset of anaerobiosis in darkened, N-limited cells of the green alga Selenastrum minutum (Naeg.) Collins elicited the following metabolic responses. There was a rapid decrease in energy charge from 0.85 to a stable lower value of 0.6 accompanied by rapid increases in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kinase and 6-phosphofructokinase, respectively. There was also a large increase in fructose-2,6-bisphosphate, which, since this alga lacks pyrophosphate dependent 6-phosphofructokinase, can be inferred to inhibit gluconeogenic fructose-1,6-bisphosphatase activity. These changes resulted in an approximately twofold increase in the rate of starch breakdown indicating a Pasteur effect. The Pasteur effect was accompanied by accumulation of d-lactate, ethanol and succinate as fermentation end-products, but not malate. Accumulation of succinate was facilitated by reductive carbon metabolism by a partial TCA cycle (GC Vanlerberghe, AK Horsey, HG Weger, DH Turpin [1989] Plant Physiol 91: 1551-1557). An initial stoichiometric decline in aspartate and increases in succinate and alanine suggests that aspartate catabolism provides an initial source of carbon for reduction to succinate under anoxic conditions. These observations allow us to develop a model for the regulation of anaerobic carbon metabolism and a model for short-term and long-term strategies for succinate accumulation in a green alga.  相似文献   

11.
Shen GM  Zhang FL  Liu XL  Zhang JW 《FEBS letters》2010,584(20):4366-4372
Hundreds of genes can be regulated by hypoxia-inducible factor 1 (HIF1) under hypoxia. Here we demonstrated a HIF1-mediated induction of protein phosphatase 1, regulatory subunit 3C gene (PPP1R3C) in human MCF7 cells under hypoxia. By mutation analysis we confirmed the presence of a functional hypoxia response element that is located 229 bp upstream from the PPP1R3C gene. PPP1R3C induction correlates with a significant glycogen accumulation in MCF7 cells under hypoxia. Knockdown of either HIF1α or PPP1R3C attenuated hypoxia-induced glycogen accumulation significantly. Knockdown of HIF2α reduced hypoxia-induced glycogen accumulation slightly (but not significantly). Our results demonstrated that HIF1 promotes glycogen accumulation through regulating PPP1R3C expression under hypoxia, which revealed a novel metabolic adaptation of cells to hypoxia.  相似文献   

12.
Picrorhiza kurrooa Royle ex Benth. is an economically important medicinal plant known to yield picrosides which have high medicinal value. Picroside I and picroside II are major picrosides associated with various bioactivities. The present work analyzed the expression of various genes of the picrosides biosynthesis pathway in different tissues of the plant in relation to the picrosides content. Eight full-length cDNA sequences namely, 1-deoxy-d-xylulose-5-phosphate synthase (2.317 kb), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (1.767 kb), 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (1.674 kb), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (1.701 kb), acetyl-CoA acetyltransferase (1.545 kb), 3-hydroxy-3-methylglutaryl coenzyme A reductase (2.241 kb), isopentenyl pyrophosphate isomerase (987 bp) and geranyl diphosphate synthase (1.434 kb), were cloned to full-length followed by expression analysis of ten genes vis-à-vis picrosides content analysis. There is maximum accumulation of picrosides in leaf tissue followed by the rhizome and root, and a similar pattern of expression was found in all the ten genes. The genes responded to the modulators of the picrosides biosynthesis. Picrosides accumulation was enhanced by application of hydrogen peroxide and abscisic acid, whereas methyl jasmonate and salicylic acid treatment decreased the content.  相似文献   

13.
Carbon-conserving pathways have the potential of increasing product yields in biotechnological processes. The aim of this project was to investigate the functionality of a novel carbon-conserving pathway that produces 3 mol of acetyl-CoA from fructose-6-phosphate without carbon loss in the yeast Saccharomyces cerevisiae. This cyclic pathway relies on a generalist phosphoketolase (Xfspk), which can convert xylulose-5-phosphate, fructose-6-phosphate and sedoheptulose-7-phosphate (S7P) to acetyl phosphate. This cycle is proposed to overcome bottlenecks from the previously reported non-oxidative glycolysis (NOG) cycle. Here, in silico simulations showed accumulation of S7P in the NOG cycle, which was resolved by blocking the non-oxidative pentose phosphate pathway and introducing Xfspk and part of the riboneogenesis pathway. To implement this, a transketolase and transaldolase deficient S. cerevisiae was generated and a cyclic pathway, the Glycolysis AlTernative High Carbon Yield Cycle (GATHCYC), was enabled through xfspk expression and sedoheptulose bisphosphatase (SHB17) overexpression. Flux through the GATHCYC was demonstrated in vitro with a phosphoketolase assay on crude cell free extracts, and in vivo by constructing a strain that was dependent on a functional pathway to survive. Finally, we showed that introducing the GATHCYC as a carbon-conserving route for 3-hydroxypropionic acid (3-HP) production resulted in a 109% increase in 3-HP titers when the glucose was exhausted compared to the phosphoketolase route only.  相似文献   

14.
Prolonged inorganic nitrogen (NO3 +NH4 +) limitation of non-N2-fixing soybean plants affected leaflet photosynthesis rates, photosynthate accumulation rates and levels, and anaplerotic carbon metabolite levels. Leaflets of nitrogen-limited (N-Lim), 27–31-day-old plants displayed 15 to 23% lower photosynthesis rates than leaflets of nitrogen-sufficient (N-Suff) plants. In contrast, N-Lim plant leaflets displayed higher sucrose and starch levels and rates of accumulation, as well as higher levels of carbon metabolites associated with sucrose and starch synthesis, e. g., glycerate-3-phosphate and glucose phosphates, than N-Suff plant leaflets. Concurrently, levels of soluble protein, chlorophyll, and anaplerotic metabolites, e.g., malate and phosphoenolpyruvate, were lower in leaflets of N-Lim plants than N-Suff plants, suggesting that the enzymes of the anaplerotic carbon metabolite pathway were lower in activity in N-Lim plant leaflets. Malate net accumulation rates in the earliest part of the illumination period were lower in N-Lim than in N-Suff plant leaflets; however, by the midday period, malate accumulation rate in N-Lim plant leaflets exceeded that in leaflets of N-Suff plants. Further, soluble protein accumulation rates in leaflets of N-Suff and N-Lim plants were similar, and the rate of dark respiration, measured in the early part of the dark period, was higher in N-Lim plant leaflets than in N-Suff plant leaflets. It was concluded that during prolonged N-limitation, foliar metabolite conditions favored the channelling of a large proportion of the carbon assimilate into sucrose and starch, while assimilate flow through the anaplerotic pathway was diminished. However, in some daytime periods, there was a normal level of carbon assimilate channelled through the anaplerotic pathway for ultimate use in amino acid and protein synthesis.Abbreviations ADPG-PPiase ADPglucose pyrophosphorylase - Ce CO2 in the leaf photosynthesis measuring cuvette - Ci leaf internal CO2 during photosynthesis measurement - Chl chlorophyll - DHAP dihydroxyacetone phosphate - GAP glyceraldehyde-3-phosphate - Gsw stomatal conductance with units as mmol H2O m–2 s–1 - G1P glucose-1-phosphate - G6P glucose-6-phosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - FBPase-pH 8.1 chloroplastic fructose-1,6-bisP (C-1) phosphatase (pH 8.1) - MAL malate - N inorganic nitrogen, i.e. NO3 +NH4 + (at levels and molar ratios indicated) - PE post-emergence - PEP phosphoenolpyruvate - PEPCase phosphoenolpyruvate carboxylase - PGA 3-phosphoglycerate - PYR pyruvate - PYR kinase pyruvate kinase - Pn net CO2 photoassimilation in leaves - PPFD photosynthetic photon flux density - PPRC pentose phosphate reductive cycle - RuBP ribulose-1,5-bisphosphate; rubisco-ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf mass - SPS sucrose-6-phosphate synthase - TCA cycle tricarboxylic acid cycle; triose-P-DAP+GAP  相似文献   

15.
In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contributing most to total Pgm activity. By inactivation of pgm we created C. glutamicum IMpgm showing only about 12% Pgm activity when compared to the parental strain. We characterized both strains during cultivation with either glucose or maltose as substrate and observed that (i) the glc-1-P content in the WT (wild-type) and the mutant remained constant independent of the carbon source used, (ii) the glycogen levels in the pgm mutant were lower during growth on glucose and higher during growth on maltose, and (iii) the morphology of the mutant was altered with maltose as a substrate. We conclude that C. glutamicum employs glycogen as carbon capacitor to perform glc-1-P homeostasis in the exponential growth phase and is therefore able to counteract limited Pgm activity for both anabolic and catabolic metabolic pathways.  相似文献   

16.
17.
d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate to mannitol, were expressed in the cyanobacterium resulting in accumulation of mannitol in the cells and in the culture medium. The mannitol biosynthetic genes were expressed from a single synthetic operon inserted into the cyanobacterial chromosome by homologous recombination. The mannitol biosynthesis operon was constructed using a novel uracil-specific excision reagent (USER)-based polycistronic expression system characterized by ligase-independent, directional cloning of the protein-encoding genes such that the insertion site was regenerated after each cloning step. Genetic inactivation of glycogen biosynthesis increased the yield of mannitol presumably by redirecting the metabolic flux to mannitol under conditions where glycogen normally accumulates. A total mannitol yield equivalent to 10% of cell dry weight was obtained in cell cultures synthesizing glycogen while the yield increased to 32% of cell dry weight in cell cultures deficient in glycogen synthesis; in both cases about 75% of the mannitol was released from the cells into the culture medium by an unknown mechanism. The highest productivity was obtained in a glycogen synthase deficient culture that after 12 days showed a mannitol concentration of 1.1 g mannitol L−1 and a production rate of 0.15 g mannitol L−1 day−1. This system may be useful for biosynthesis of valuable sugars and sugar derivatives from CO2 in cyanobacteria.  相似文献   

18.
The Arc system is a two-component regulatory system composed of ArcA and ArcB in Escherichia coli. In the present study, the effects of arcA and arcB genes knockout on the TCA cycle activation in E. coli were investigated for the anaerobic and microaerobic conditions. Under anaerobic condition, the TCA cycle was up-regulated along with high lactate production, together with up-regulation of LDH for arcB mutant as compared with the parent strain. Due to down-regulation of aceE, aceF and lpdA genes which code for PDHc and low activity of Pfl in arcB mutant, the glycolysis as well as oxidative pentose phosphate pathway was down-regulated under anaerobic condition. The TCA cycle enzymes were further up-regulated when nitrate was added by modifying the redox state along with lower lactate production for arcB mutant. Different from the case of anaerobic condition, the glycolysis was activated under microaerobic condition, which may be partly due to the increased activity of PDHc encoded by aceE, F and lpdA genes. Under microaerobic condition, the TCA cycle genes together with their corresponding enzymes were up-regulated for arcB mutant as compared with the parent strain. These characteristics were further enhanced in arcA mutant as compared with the case of arcB mutant. The up-regulation of the TCA cycle together with down-regulation of cydB gene expression caused higher redox state in the arcA/B mutants, which in turn repressed the TCA cycle. Then the TCA cycle could be further increased by the addition of nicotinic acid (NA).  相似文献   

19.
Nitrogen fixation within legume nodules results from a complex metabolic exchange between bacteria of the family Rhizobiaciae and the plant host. Carbon is supplied to the differentiated bacterial cells, termed bacteroids, in the form of dicarboxylic acids to fuel nitrogen fixation. In exchange, fixed nitrogen is transferred to the plant. Both the bacteroid and the plant-derived peribacteroid membrane tightly regulate the exchange of metabolites. In the bacteroid oxidation of dicarboxylic acids via the TCA cycle occurs in an oxygenlimited environment. This restricts the TCA cycle at key points, such as the 2-oxoglutarate dehydrogenase complex, and requires that inputs of carbon and reductant are balanced with outputs from the TCA cycle. This may be achieved by metabolism through accessory pathways that can remove intermediates, reductant, or ATP from the cycle. These include synthesis of the carbon polymers PHB and glycogen and bypass pathways such as the recently identified 2-oxoglutarate decarboxylase reaction in soybean bacteroids. Recent labeling data have shown that bacteroids synthesize and secrete amino acids, which has led to controversy over the role of amino acids in nodule metabolism. Here we review bacteroid carbon metabolism in detail, evaluate the labeling studies that relate to amino acid metabolism by bacteroids, and place the work in context with the genome sequences of Mesorhizobium loti and Sinorhizobium meliloti. We also consider a wider range of metabolic pathways that are probably of great importance to rhizobia in the rhizosphere, during nodule initiation, infection thread development, and bacteroid development. Referee: Dr. Robert Ludwig, Department of Molecular, Celluar, and Developmental Biology, Sinheimer Laboratories, University of California, Santa Cruz, CA 95064  相似文献   

20.
Summary Determinations of the momentary levels of various intermediates related to the activity of the tricarboxylic acid cycle have been made during citric acid production in high-accumulating (manganese deficient) and lowaccumulating (manganese supplemented) mycelia of Aspergillus niger. During the growth period the levels of almost all TCA cycle acids, with the exception of 2-oxo-acids, were unusually high; during the induction phase of citrate accumulation malate, fumarate, and isocitrate decreased, whereas pyruvate, oxalacetate, and citrate increased. The presence of succinate could not be demonstrated. The interrelations of the momentary concentrations of the intermediates mainly demonstrate a lack in activity of 2-oxoglutarate dehydrogenase, representing a block in the TCA cycle concomitant with a strongly operating glycolysis as a prerequisite for citrate accumulation. Inhibition studies with crude enzyme preparations suggest that an inhibition of malate dehydrogenase by citrate and also inhibition of isocitrate dehydrogenase by citrate and 2-oxoglutarate occur during the production phase as additional factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号