首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 探讨miR-106b在阿尔茨海默病(Alzheimer's disease,AD)发病中的作用.方法 取3月龄和6月龄APPswe/PSΔE9小鼠脑组织,进行microRNA芯片的检测;利用real-time PCR检测3、6、9月龄APPswe/PSΔE9小鼠脑组织中miR-106b的表达,对芯片检测结果进行验证;通过构建miR-106b稳定转染细胞系和miR-106b knockdown研究miR-106b与TGFBR2表达之间的关系; 构建TGFBR2 3'UTR-荧光素酶报告载体,验证miR-106b是否可以直接调控TGFBR2蛋白的表达;采用Western blot的方法检测APPswe/ΔPSΔE9小鼠和对照小鼠脑组织中TGFBR2蛋白的表达情况.结果 miR-106b在3月龄和6月龄AD模型小鼠脑组织中表达升高,在9月龄模型小鼠脑组织中表达降低;通过体外实验,我们发现miR-106b与TGFBR2蛋白的表达呈负相关;荧光素酶报告实验表明TGFBR2 3'UTR序列中包含miR-106b的结合位点;TGFBR2蛋白在3、6、9、12月龄AD模型小鼠脑组织中表达均降低.结论 miR-106b可能通过调控TGFBR2蛋白的表达影响TGF-β信号通路,从而参与AD的发病.  相似文献   

2.
Recent studies have shown that microRNA-106a (miR-106a) is overexpressed in gastric cancer and contributes to tumor growth. In this study, we investigated whether miR-106a mediated resistance of the gastric cancer cell line SGC7901 to the chemotherapeutic agent cisplatin (DDP). MiR-106a expression was up-regulated in the DDP resistant cell line SGC7901/DDP compared with its parental line SGC7901. Transfection of miR-106a induced DDP resist- ance in SGC7901, while suppression of miR-106a in SGC7901/DDP led to enhanced DDP cytotoxicity. Further study indicated that the mechanism of miR-106a-induced DDP resistance involved the expression of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) protein and its downstream phosphatidylinositol 3 kinase (Pl3K)/protein kinase B (AKT) pathway. This study provides a novel mechanism of DDP resistance in gastric cancer.  相似文献   

3.
4.
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. We aimed to investigate the role of LINC00184 in NSCLC. Migration, proliferation and invasion of NSCLC cells were analysed using the wound healing assay, cell counting kit-8 assay and transwell assay, respectively. Apoptosis and cell cycle were assessed using flow cytometry. Online bioinformatics tools were utilized to predict downstream microRNAs (miRNA) or genes related to LINC00184 expression. The RNA pull-down experiment and luciferase reporter assay were performed to verify the predictions thereof. LINC00184, miR-524-5p, and high mobility group 2 protein (HMGB2) expression levels in NSCLC tissues and cell lines were detected using quantitative real-time polymerase chain reaction. An NSCLC mouse model was constructed for in vivo experiments. LINC00184 overexpression was observed in NSCLC tissues and cell lines and was found to be correlated with poor prognosis. LINC00184 knockdown inhibited cell proliferation, migration and invasion, induced cell cycle arrest and accelerated apoptosis in NSCLC cell lines. LINC00184 suppressed tumour growth and proliferation in NSCLC mouse models and directly targeted the miR-524-5p/HMGB2 axis. Moreover, the expression levels of LINC00184 and HMGB2 were negatively correlated with miR-524-5p expression, whereas LINC00184 expression was positively correlated with HMGB2 expression. LINC00184 affected the cell cycle, proliferation, apoptosis, migration and invasion in NSCLC via regulation of the miR-524-5p/HMGB2 axis.  相似文献   

5.
Our recent study of the microRNA expression signature of prostate cancer (PCa) revealed that microRNA-224 (miR-224) is significantly downregulated in PCa tissues. Here, we found that restoration of miR-224 significantly inhibits PCa cell migration and invasion. Additionally, we found that oncogenic TPD52 is a direct target of miR-224 regulation. Silencing of the TPD52 gene significantly inhibits cancer cell migration and invasion. Moreover, TPD52 expression is upregulated in cancer tissues and negatively correlates with miR-224 expression. We conclude that loss of tumour-suppressive miR-224 enhances cancer cell migration and invasion in PCa through direct regulation of oncogenic TPD52.  相似文献   

6.
7.
Genome duplication is tightly controlled in multicellular organisms to ensure the genome stability. Studies in Saccharomyces cerevisiae and Xenopus show that minichromosome maintenance (MCM) proteins are essential for genome duplication. However, the development role of MCM proteins in multicellular organisms is not well known. MCM5 encodes a member of the MCM2-7 protein family involved in the initiation of DNA replication. The sequences of all Mcm5 homologues from yeast to human are highly conserved and suggest that their functions are also conserved. Here, we isolated the first mutant allele of mcm-5 (fw7) in Caenorhabditis elegans. Homozygous mcm-5 (fw7) mutants from heterozygous parents exhibited variable larval lethality and adult sterility. The postembryonically born neuron number was decreased and also showed aberrant axon morphology. Our study revealed that the losses of neurons in mcm-5 (fw7) mutants were caused by cell cycle defects not by programmed cell death. The examination showed that mcm-5 was widely used for postembryonic development in multiple cells such as seam cells, gonad and intestinal cells. Knockdown of mcm-5 by RNAi caused 98.1% embryonic arrest, suggesting that mcm-5 was also required for embryonic development. After RNAi treatment of the other MCM2-7 family members, we found that they all exhibited similar phenotypes as mcm-5, suggesting that the MCM2-7 family in C. elegans might function associated with cell division as its homologues in S. cerevisiae.  相似文献   

8.
Activating mutations of RAS are frequently observed in subsets of human cancers, indicating that RAS activation is involved in tumorigenesis. Here, we identified and characterized a novel G to T transversion mutation of the K-ras gene at the third position of codon 19 (TTG) which substituted phenylalanine for leucine in 3 primary colon carcinomas. Biological and biochemical activity was examined using transformed NIH3T3 cells expressing mutant or wild-type K-ras. Transformants harboring the K-ras mutation at codon 19 showed proliferative capacity under serum-starved conditions, less contact inhibition, anchorage-independent growth, tumorigenicity in nude mice and elevation of active Ras-GTP levels. These results indicated that this novel mutation possesses high oncogenic activity.  相似文献   

9.
Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer.  相似文献   

10.
Pancreatic cancer typically has an unfavourable prognosis due to late diagnosis and a lack of therapeutic options. Thus, it is important to better understand its pathological mechanism and to develop more effective treatments for the disease. Human chromosome 20q13 has long been suspected to harbour oncogenes involved in pancreatic cancer and other tumours. In this study, we found that eEF1A2, a gene located in 20q13, was significantly upregulated in pancreatic cancer. Little or no expression of eEF1A2 was detected in normal human pancreatic and chronic pancreatitis tissues, whereas increased eEF1A2 expression occurred in 83% of the pancreatic cancers we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of eEF1A2 promoted cell growth, survival, and invasion in pancreatic cancer. Our data thus suggest that eEF1A2 might play an important role in pancreatic carcinogenesis, possibly by acting as a tumour oncogene.  相似文献   

11.
LARGE is a putative glycosyltransferase found to be mutated in mice with myodystrophy or patients with congenital muscular dystrophy. By homology searches, we identified in the Dictyostelium discoideum genome four open reading frames, i.e. gnt12-15, encoding proteins with sequence similarity to LARGE. Semi-quantitative RT-PCR analysis revealed distinct temporal expression patterns of the four gnt genes throughout Dictyostelium development. To explore the gene function, we performed targeted disruptions of gnt14 and gnt15. The gnt14(-) strains showed no obvious phenotypes. However, gnt15(-) cells grew slowly, changed in morphology, and displayed a developmental phenotype arresting at early stages. Compared with the wild type, gnt15(-) cells were more adhesive and exhibited altered levels of some surface adhesion molecules. Moreover, lectin-binding analysis demonstrated that gnt15 disruption affected profiles of membrane glycoproteins. Taken together, our data suggest that Gnt15 is essential for Dictyostelium development and may have a role in modulating cell adhesion and glycosylation.  相似文献   

12.
Hoxb8 has been suggestively implicated in the formation of the zone of polarizing activity (ZPA) in the limb bud. However, as hoxb8-/- mice did not show any defects in their limb development, the role of Hoxb8 during limb development has not been fully elucidated. Here, we report the identification of the medaka hoxb8a mutant, unextended-fin (ufi), in which all the fin tissues were malformed. Since the abnormal phenotype was observed in the caudal fin, the ufi phenotype suggests that the medaka Hoxb8a has a fundamental role in the formation of appendages protruding from the trunk. Our analyses revealed that the expression of wnt5a, a regulator of cell migration that signals through the non-canonical Wnt/Ca2+ pathway, was down-regulated in the ufi fin-folds. In fact, we found that the proximal-distal cell migration was impaired in ufi mutants and that the defect could be reversed by the injection of a Wnt5a protein. Moreover, we show herein that the numbers of proliferating cells and osteoblastic cells were increased in the ufi mutants. According to these results, we propose that the medaka Hoxb8a protein functions in the outgrowth of appendages through the regulation of cell migration and osteoblast differentiation.  相似文献   

13.
miR-122, a hepato-specific microRNA (miRNA), is frequently down-regulated in human hepatocellular carcinoma (HCC). In an effort to identify novel miR-122 targets, we performed an in silico analysis and detected a putative binding site in the 3′-untranslated region (3′-UTR) of Bcl-w, an anti-apoptotic Bcl-2 family member. In the HCC-derived cell lines, Hep3B and HepG2, we confirmed that miR-122 modulates Bcl-w expression by directly targeting binding site within the 3′-UTR. The cellular mRNA and protein levels of Bcl-w were repressed by elevated levels of miR-122, which subsequently led to reduction of cell viability and activation of caspase-3. Thus, Bcl-w is a direct target of miR-122 that functions as an endogenous apoptosis regulator in these HCC-derived cell lines.  相似文献   

14.
The potential prostate cancer susceptibility gene ELAC2 has a Caenorhabditis elegans homolog (which we call hoe-1, for homolog of ELAC2). We have explored the biological role of this gene using RNAi to reduce gene activity. We found that worms subjected to hoe-1 RNAi are slow-growing and sterile. The sterility results from a drastic reduction in germline proliferation and cell-cycle arrest of germline nuclei. We found that hoe-1 is required for hyperproliferation phenotypes seen with mutations in three different genes, suggesting hoe-1 may be generally required for germline proliferation. We also found that reduction of hoe-1 by RNAi suppresses the multivulva (Muv) phenotype resulting from activating mutations in ras and that this suppression is likely to be indirect. This is the first demonstration of a biological role for this class of proteins in a complex eukaryote and adds important information when considering the role of ELAC2 in prostate cancer.  相似文献   

15.
为评价miR-21的高表达与胰腺癌预后的相关性,通过全面检索Pub Med,EMBASE,Google scholar,维普,CNKI等数据库,收集已公开发表的关于miR-21的高表达与胰腺癌预后相关性的文献,按meta分析的要求对原始文献的质量进行评估,采用STATA V12.0软件对各研究的效应量进行统计分析。结果发现共纳入4篇文献(共300个病例),合并总生存率(OS)HR为1.26(95%CI:1.08~1.47,P0.05)。由此可以推断胰腺癌预后的一个危险因素为miR-21的高表达。  相似文献   

16.
Plant cells often use cell surface receptors to sense environmental changes and then transduce external signals via activated signaling pathways to trigger adaptive responses. In Arabidopsis, the receptor-like protein kinase (RLK) gene family contains more than 600 members, and some of these are induced by pathogen infection, suggesting a possible role in plant defense responses. We previously characterized an S-locus RLK (CBRLK1) at the biochemical level. In this study, we examined the physiological function of CBRLK1 in defense responses. CBRLK1 mutant and CBRLK1-overexpressing transgenic plants showed enhanced and reduced resistance against a virulent bacterial pathogen, respectively. The altered pathogen resistances of the mutant and overexpressing transgenic plants were associated with increased and reduced induction of the pathogenesis-related gene PR1, respectively. These results suggest that CBRLK1 plays a negative role in the disease resistance signaling pathway in Arabidopsis.  相似文献   

17.
DNA methylation plays a crucial role in gene silencing via recruitment of the proteins that specifically recognize methyl-CpG. In the present study, we have shown that two splicing isoforms of MBD3, xMBD3 and xMBD3LF, are the major methyl-CpG binding proteins in Xenopus eggs and early stage embryos. They were highly expressed in the eyes and central nerve system of tadpoles. Inhibition of the expression of xMBD3 by antisense oligonucleotides severely affected embryogenesis. Low-dose injection of antisense oligonucleotides specifically affected eye formation. An identical phenotype was observed on the forced expression of xMBD3 mutated in the methyl-CpG binding domain (MBD) and xMBD3LF, those of which lack methylated DNA binding activity. On the other hand, the eye-defective phenotype was not induced on the injection of truncated forms of mutant xMBD3 or xMBD3LF that contained MBD. We propose that MBD3, distinct from the case in mouse, plays a crucial role in the recognition of methylated genes as an intrinsic component of the complex to guide the corepressor complex during an early stage of Xenopus embryogenesis.  相似文献   

18.
Multidrug resistance (MDR) is the main barrier to the success of chemotherapy for gastric cancer (GC). miR-106a, which is highly expressed in GC, influences a variety of aspects of GC. However, the function of miR-106a in MDR of GC still remains unclear. In the present study, we found that miR-106a is elevated in MDR cell lines. miR-106a promotes chemo-resistance of GC cells, accelerates ADR efflux, and suppresses drug-induced apoptosis. Finally, we show that runt-related trans factor 3 (RUNX3) is the functional target of miR-106a. Collectively, these findings demonstrate that miR-106a may promote MDR in GC cells by targeting RUNX3.  相似文献   

19.
20.
Loss of Twist gene function arrests the growth of the limb bud shortly after its formation. In the Twist(-/-) forelimb bud, Fgf10 expression is reduced, Fgf4 is not expressed, and the domain of Fgf8 and Fgfr2 expression is altered. This is accompanied by disruption of the expression of genes (Shh, Gli1, Gli2, Gli3, and Ptch) associated with SHH signalling in the limb bud mesenchyme, the down-regulation of Bmp4 in the apical ectoderm, the absence of Alx3, Alx4, Pax1, and Pax3 activity in the mesenchyme, and a reduced potency of the limb bud tissues to differentiate into osteogenic and myogenic tissues. Development of the hindlimb buds in Twist(-/-) embryos is also retarded. The overall activity of genes involved in SHH signalling is reduced.Fgf4 and Fgf8 expression is lost or reduced in the apical ectoderm, but other genes (Fgf10, Fgfr2) involved with FGF signalling are expressed in normal patterns. Twist(+/-);Gli3(+/XtJ) mice display more severe polydactyly than that seen in either Twist(+/-) or Gli3(+/XtJ) mice, suggesting that there is genetic interaction between Twist and Gli3 activity. Twist activity is therefore essential for the growth and differentiation of the limb bud tissues as well as regulation of tissue patterning via the modulation of SHH and FGF signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号