首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was discovered that the mutant D112R RecA protein is more resistant to the action of its negative regulator, the RecX protein, than wild type protein both in vitro and in vivo. By means of molecular modeling methods, we showed that amino-acid residue at the position 112 cannot approach the RecX closer than 25–28 Å. Thus, direct contact between the amino acid residue and the RecX is not possible. The RecA D112R protein more actively competes with the SSB protein for the binding sites on single-stranded DNA (ssDNA) and, therefore, differs from wild type RecA by the filamentation dynamics on ssDNA. On the other hand, when replacing ATP to dATP, wild type RecA protein, changing the filamentation dynamics on ssDNA, also become more resistant to the RecX. On the basis of these data, a conclusion was drawn that filamentation dynamics is of substantially greater importance in the resistance of the RecA filament to the RecX than previously discussed protein-protein interactions RecA-RecX. We also propose an improved model of the RecA filament regulation by the RecX protein, according to which the RecA filament elongation along ssDNA is blocked by the RecX protein on the region of ssDNA located beyond the filament.  相似文献   

2.
It is known that RecX is a negative regulator of RecA protein. We found that the mutant RecA D112R protein exhibits increased resistance to RecX protein comparatively to wild-type RecA protein in vitro and in vivo. Using molecular modeling we showed, that amino acid located in position 112 can not approach RecX closer than 25-28 angstroms. Thus, direct contact between amino acid and RecX is impossible. RecA D112R protein more actively competes with SSB protein for the binding sites on ssDNA and, therefore, differs from the wild-type RecA protein by dynamics of filamentation on ssDNA. On the other hand, after the replacement of ATP by dATP, the wild-type RecA protein, changing the dynamics of filamentation on ssDNA, also becomes more resistant to RecX. Based on these data it is concluded that the dynamics of filamentation has a great, if not dominant role in the stability of RecA filament to RecX relative to the role of RecA-RecX protein-protein interactions discussed earlier. We also propose an improved model of regulation of RecA by RecX protein, where RecA filament elongation along ssDNA is blocked by RecX protein on the ssDNA region, located outside the filament.  相似文献   

3.
Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could re-polymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination.  相似文献   

4.
The bacterial RecA protein has been the dominant model system for understanding homologous genetic recombination. Although a crystal structure of RecA was solved ten years ago, we still do not have a detailed understanding of how the helical filament formed by RecA on DNA catalyzes the recognition of homology and the exchange of strands between two DNA molecules. Recent structural and spectroscopic studies have suggested that subunits in the helical filament formed in the RecA crystal are rotated when compared to the active RecA-ATP-DNA filament. We examine RecA-DNA-ATP filaments complexed with LexA and RecX to shed more light on the active RecA filament. The LexA repressor and RecX, an inhibitor of RecA, both bind within the deep helical groove of the RecA filament. Residues on RecA that interact with LexA cannot be explained by the crystal filament, but can be properly positioned in an existing model for the active filament. We show that the strand exchange activity of RecA, which can be inhibited when RecX is present at very low stoichiometry, is due to RecX forming a block across the deep helical groove of the RecA filament, where strand exchange occurs. It has previously been shown that changes in the nucleotide bound to RecA are associated with large motions of RecA's C-terminal domain. Since RecX binds from the C-terminal domain of one subunit to the nucleotide-binding core of another subunit, a stabilization of RecA's C-terminal domain by RecX can likely explain the inhibition of RecA's ATPase activity by RecX.  相似文献   

5.
The Bacillus subtilis recH342 strain, which decreases interspecies recombination without significantly affecting the frequency of transformation with homogamic DNA, carried a point mutation in the putative recX (yfhG) gene, and the mutation was renamed as recX342. We show that RecX (264 residues long), which shares partial identity with the Proteobacterial RecX (<180 residues), is a genuine recombination protein, and its primary function is to modulate the SOS response and to facilitate RecA-mediated recombinational repair and genetic recombination. RecX-YFP formed discrete foci on the nucleoid, which were coincident in time with RecF, in response to DNA damage, and on the poles and/or the nucleoid upon stochastic induction of programmed natural competence. When DNA was damaged, the RecX foci co-localized with RecA threads that persisted for a longer time in the recX context. The absence of RecX severely impaired natural transformation both with plasmid and chromosomal DNA. We show that RecX suppresses the negative effect exerted by RecA during plasmid transformation, prevents RecA mis-sensing of single-stranded DNA tracts, and modulates DNA strand exchange. RecX, by modulating the “length or packing” of a RecA filament, facilitates the initiation of recombination and increases recombination across species.  相似文献   

6.
The RecA/RAD51 nucleoprotein filament is central to the reaction of homologous recombination (HR). Filament activity must be tightly regulated in vivo as unrestrained HR can cause genomic instability. Our mechanistic understanding of HR is restricted by lack of structural information about the regulatory proteins that control filament activity. Here, we describe a structural and functional analysis of the HR inhibitor protein RecX and its mode of interaction with the RecA filament. RecX is a modular protein assembled of repeated three-helix motifs. The relative arrangement of the repeats generates an elongated and curved shape that is well suited for binding within the helical groove of the RecA filament. Structure-based mutagenesis confirms that conserved basic residues on the concave side of RecX are important for repression of RecA activity. Analysis of RecA filament dynamics in the presence of RecX shows that RecX actively promotes filament disassembly. Collectively, our data support a model in which RecX binding to the helical groove of the filament causes local dissociation of RecA protomers, leading to filament destabilisation and HR inhibition.  相似文献   

7.
The RecX protein is a potent inhibitor of RecA protein activities. RecX functions by specifically blocking the extension of RecA filaments. In vitro, this leads to a net disassembly of RecA protein from circular single-stranded DNA. Based on multiple observations, we propose that RecX has a RecA filament capping activity. This activity has predictable effects on the formation and disassembly of RecA filaments. In vivo, the RecX protein may limit the length of RecA filaments formed during recombinational DNA repair and other activities. RecX protein interacts directly with RecA protein, but appears to interact in a functionally significant manner only with RecA filaments bound to DNA.  相似文献   

8.
The RecX protein inhibits RecA filament extension, leading to net filament disassembly. The RecF protein physically interacts with the RecX protein and protects RecA from the inhibitory effects of RecX. In vitro, efficient RecA filament formation onto single-stranded DNA binding protein (SSB)-coated circular single-stranded DNA (ssDNA) in the presence of RecX occurs only when all of the RecFOR proteins are present. The RecOR proteins contribute only to RecA filament nucleation onto SSB-coated single-stranded DNA and are unable to counter the inhibitory effects of RecX on RecA filaments. RecF protein uniquely supports substantial RecA filament extension in the presence of RecX. In vivo, RecF protein counters a RecX-mediated inhibition of plasmid recombination. Thus, a significant positive contribution of RecF to RecA filament assembly is to antagonize the effects of the negative modulator RecX, specifically during the extension phase.  相似文献   

9.
Escherichia coli RecX (RecXEc) is a negative regulator of RecA activities both in the bacterial cell and in vitro. In contrast, the Neisseria gonorrhoeae RecX protein (RecXNg) enhances all RecA-related processes in N. gonorrhoeae. Surprisingly, the RecXNg protein is not a RecA protein activator in vitro. Instead, RecXNg is a much more potent inhibitor of all RecANg and RecAEc activities than is the E. coli RecX ortholog. A series of RecXNg mutant proteins representing a gradient of functional deficiencies provide a direct correlation between RecANg inhibition in vitro and the enhancement of RecANg function in N. gonorrhoeae. Unlike RecXEc, RecXNg does not simply cap the growing ends of RecA filaments, but it directly facilitates a more rapid RecA filament disassembly. Thus, in N. gonorrhoeae, recombinational processes are facilitated by RecXNg protein-mediated limitations on RecANg filament presence and/or length to achieve maximal function.  相似文献   

10.
The DinI and RecX proteins of Escherichia coli both modulate the function of RecA protein, but have very different effects. DinI protein stabilizes RecA filaments, preventing disassembly but permitting assembly. RecX protein blocks RecA filament extension, which can lead to net filament disassembly. We demonstrate that both proteins can interact with the RecA filament, and propose that each can replace the other. The DinI/RecX displacement reactions are slow, requiring multiple minutes even when a large excess of the challenging protein is present. The effects of RecX protein on RecA filaments are manifest at lower modulator concentrations than the effects of DinI protein. Together, the DinI and RecX proteins constitute a new regulatory network. The two proteins compete directly as mainly positive (DinI) and negative (RecX) modulators of RecA function.  相似文献   

11.
Homologous recombination is a fundamental process enabling the repair of double-strand breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences that are homologous to the ssDNA and exchange the homologous strands. Due to the highly dynamic character of this process and its rapid propagation along the filament, the sequence recognition and strand exchange mechanism remains unknown at the structural level. The recently published structure of the RecA/DNA filament active for recombination (Chen et al., Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structure, Nature 2008, 453, 489) provides a starting point for new exploration of the system. Here, we investigate the possible geometries of association of the early encounter complex between RecA/ssDNA filament and double-stranded DNA (dsDNA). Due to the huge size of the system and its dense packing, we use a reduced representation for protein and DNA together with state-of-the-art molecular modeling methods, including systematic docking and virtual reality simulations. The results indicate that it is possible for the double-stranded DNA to access the RecA-bound ssDNA while initially retaining its Watson–Crick pairing. They emphasize the importance of RecA L2 loop mobility for both recognition and strand exchange.  相似文献   

12.
The protein RecA is involved in homologous recombination, DNA repair and also catalyzes DNA strand exchange. RecX gene is downstream of recA and the gene product RecX is supposed to be important for RecA regulation. Recombinant RecX is purified to homogeneity, and circular dichroism (CD) and FTIR spectroscopy show the protein to exist mostly in helical conformation. The fluorescence emission maxima of the native and the denatured protein and the steady-state fluorescence quenching studies with acrylamide indicate the presence of tryptophan residues partially exposed to the bulk solvent. Denaturation studies with urea and guanidine hydrochloride by use of spectroscopic methods, fluorescence, and CD also confirm the instability of the protein and unfolding occurs following a two-state model. Mass spectrometry and gel permeation chromatography suggest the monomeric form of the protein. Molecular modeling of RecX represents the molecule as extended and helical bundle in conformity with the spectroscopic results. To understand the mechanism of RecX in the regulation of RecA the structural model of RecA-RecX has been discussed. In this proposed model, entry of RecX into hexameric RecA filament prevents binding of ssDNA and also inhibits ATPase activity.  相似文献   

13.
The RecA protein is a central homologous recombination enzyme in the bacterial cell. Forming a right-handed filament on ssDNA, RecA provides for a homology search between two DNA molecules and homologous strand exchange. RecA protects the cell from ionizing radiation and UV light and is capable of completing recombination during normal cell growth. Several mutant and natural RecA forms have a higher recombination potential in vitro and in vivo as compared with the wild-type Escherichia coli RecA, causing hyperrecombination. Recombinational hyperactivity of RecA depends to a great extent on the filamentation dynamics and DNA transferase properties, which may depend not only on specific amino acid substitutions in RecA, but also by defects in cell enzymatic machinery, including RecO, RecR, RecF, RecX, DinI, SSB, and PsiB. The functions of these proteins are currently known at the molecular level, while their roles in hyperrecombination are still incompletely understood. An increase in recombination in vivo is not always advantageous for the cell and is therefore limited by various mechanisms. In addition to the limitations imposed by cell enzymatic machinery, genomic rearrangements aimed at inhibiting the expression of hyperactive RecA are fixed through cell generations via selection against hyperrecombination. The mechanisms regulating hyperactive RecA forms in several model systems are considered.  相似文献   

14.
The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo.  相似文献   

15.
A plasmid carrying the Deinococcus radiodurans recX gene under the control of a lactose promoter decreases the Escherichia coli cell resistance to UV irradiation and γ irradiation and also influences the conjugational recombination process. The D. radiodurans RecX protein functions in the Escherichia coli cells similarly to the E. coli RecX protein. Isolated and purified D. radiodurans RecX and E. coli RecX proteins are able to replace each other interacting with the E. coli RecA and D. radiodurans RecA proteins in vitro. Data obtained demonstrated that regulatory interaction of RecA and RecX proteins preserves a high degree of conservatism despite all the differences in the recombination reparation system between E. coli and D. radiodurans.  相似文献   

16.
17.
ABSTRACT

The RecA protein is a recombinase functioning in recombinational DNA repair in bacteria. RecA is regulated at many levels. The expression of the recA gene is regulated within the SOS response. The activity of the RecA protein itself is autoregulated by its own C-terminus. RecA is also regulated by the action of other proteins. To date, these include the RecF, RecO, RecR, DinI, RecX, RdgC, PsiB, and UvrD proteins. The SSB protein also indirectly affects RecA function by competing for ssDNA binding sites. The RecO and RecR, and possibly the RecF proteins, all facilitate RecA loading onto SSB-coated ssDNA. The RecX protein blocks RecA filament extension, and may have other effects on RecA activity. The DinI protein stabilizes RecA filaments. The RdgC protein binds to dsDNA and blocks RecA access to dsDNA. The PsiB protein, encoded by F plasmids, is uncharacterized, but may inhibit RecA in some manner. The UvrD helicase removes RecA filaments from RecA. All of these proteins function in a network that determines where and how RecA functions. Additional regulatory proteins may remain to be discovered. The elaborate regulatory pattern is likely to be reprised for RecA homologues in archaeans and eukaryotes.  相似文献   

18.
Sensing DNA damage and initiation of genetic responses to repair DNA damage are critical to cell survival. In Escherichia coli , RecA polymerizes on ssDNA produced by DNA damage creating a RecA–DNA filament that interacts with the LexA repressor inducing the SOS response. RecA filament stability is negatively modulated by RecX and UvrD. recA730 (E38K) and recA4142 (F217Y) constitutively express the SOS response. recA4162 (I298V) and recA4164 (L126V) are intragenic suppressors of the constitutive SOS phenotype of recA730 . Herein, it is shown that these suppressors are not allele specific and can suppress SOSC expression of recA730 and recA4142 in cis and in trans . recA4162 and recA4164 single mutants (and the recA730 and recA4142 derivatives) are Rec+, UVR and are able to induce the SOS response after UV treatment like wild-type. UvrD and RecX are required for the suppression in two ( recA730,4164 and recA4142,4162 ) of the four double mutants tested. To explain the data, one model suggests that recA C alleles promote SOSC expression by mimicking RecA filament structures that induce SOS and the suppressor alleles mimic RecA filament at end of SOS. UvrD and RecX are attracted to these latter structures to help dismantle or destabilize the RecA filament.  相似文献   

19.
Bacillus subtilis RecA is important for spore resistance to DNA damage, even though spores contain a single non-replicating genome. We report that inactivation of RecA or its accessory factors, RecF, RecO, RecR and RecX, drastically reduce survival of mature dormant spores to ultrahigh vacuum desiccation and ionizing radiation that induce single strand (ss) DNA nicks and double-strand breaks (DSBs). The presence of non-cleavable LexA renders spores less sensitive to DSBs, and spores impaired in DSB recognition or end-processing show sensitivities to X-rays similar to wild-type. In vitro RecA cannot compete with SsbA for nucleation onto ssDNA in the presence of ATP. RecO is sufficient, at least in vitro, to overcome SsbA inhibition and stimulate RecA polymerization on SsbA-coated ssDNA. In the presence of SsbA, RecA slightly affects DNA replication in vitro, but addition of RecO facilitates RecA-mediated inhibition of DNA synthesis. We propose that repairing of the DNA lesions generates a replication stress to germinating spores, and the RecA·ssDNA filament might act by preventing potentially dangerous forms of DNA repair occurring during replication. RecA might stabilize a stalled fork or prevent or promote dissolution of reversed forks rather than its cleavage that should require end-processing.  相似文献   

20.
The RecX protein of Escherichia coli inhibits the extension of RecA protein filaments on DNA, presumably by binding to and blocking the growing filament end. The direct binding of RecX protein to single-stranded DNA is weak, and previous reports suggested that direct binding to DNA did not explain the effects of RecX. We now demonstrate that elevated concentrations of SSB greatly moderate the effects of RecX protein. High concentrations of the yeast RPA protein have the same effect, suggesting that the effect is not species-specific or even specific to bacterial SSB proteins. A direct SSB-RecX interaction is thus unlikely. We suggest that SSB is blocking access to single-stranded DNA. The evident competition between RecX and SSB implies that the mechanism of RecX action may involve RecX binding to both RecA protein and to DNA. We speculate that the interaction of RecX protein and RecA may enable an enhanced DNA binding by RecX protein. The effects of SSB are increased if the SSB C terminus is removed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号