首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
microRNAs(miRNAs)是一类具有转录后调控作用的非编码RNA,在发育、细胞增殖、凋亡及肿瘤发生等多种生理和病理过程中发挥重要作用.为全面了解小鼠B细胞中miRNAs的表达模式,利用流式细胞仪(FACS)分选处于不同发育时期的B细胞,采用TaqMan誖低密度芯片对其进行检测,筛选到pre-B阶段9个miRNAs表达量显著上调.将筛选出的miRNAs进行靶基因预测,并对预测靶基因进行功能聚类和通路分析,发现约4%的基因参与免疫系统过程,包括Bcl2、Kit等.选取foxO1与miR-19b、miR-142-3p、miR-106b、miR-182及miR-133b进行初步功能验证,双荧光素酶报告系统及Westernblot检测结果均显示,miR-133b可直接作用于foxO1 3′UTR从而降低foxO1的表达.结合人类和小鼠B细胞中foxO1的表达情况分析,其表达模式同miR-133b表达模式呈负相关,说明miR-133b可能参与了B细胞发育过程中foxO1的表达调控过程.  相似文献   

2.
NEAT1 is an important tumor oncogenic gene in various tumors. Nevertheless, its involvement remains poorly studied in cervical cancer. Our study explored the functional mechanism of NEAT1 in cervical cancer. NEAT1 level in several cervical cancer cells was quantified and we found NEAT1 was greatly upregulated in vitro. NEAT1 knockdown inhibited cervical cancer development through repressing cell proliferation, colony formation, capacity of migration, and invasion and also inducing the apoptosis. For another, microRNA (miR)-133a was downregulated in cervical cancer cells and NEAT1 negatively modulated miR-133a expression. Subsequently, we validated that miR-133a functioned as a potential target of NEAT1. Meanwhile, SOX4 is abnormally expressed in various cancers. SOX4 was able to act as a downstream target of miR-133a and silencing of SOX4 can restrain cervical cancer progression. In addition, in vivo assays were conducted to prove the role of NEAT1/miR-133a/SOX4 axis in cervical cancer. These findings implied that NEAT1 served as a competing endogenous RNA to sponge miR-133a and regulate SOX4 in cervical cancer pathogenesis. To sum up, it was implied that NEAT1/miR-133a/SOX4 axis was involved in cervical cancer development.  相似文献   

3.
4.
Gastric cancer (GC) is the second common cause of cancer-related death worldwide. microRNAs (miRNAs) play important roles in the carcinogenesis of GC. Here, we found that miR-22 was significantly decreased in GC tissue samples and cell lines. Ectopic overexpression of miR-22 remarkably suppressed cell proliferation and colony formation of GC cells. Moreover, overexpression of miR-22 significantly suppressed migration and invasion of GC cells. CD151 was found to be a target of miR-22. Furthermore, overexpression of CD151 significantly attenuated the tumor suppressive effect of miR-22. Taken together, miR-22 might suppress GC cells growth and motility partially by inhibiting CD151.  相似文献   

5.
MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma.  相似文献   

6.
Cervical cancer (CC) is one of the most prevalent cancers in women in the world. However, the pathogenesis is still very unclear, and the current screening methods are too expensive. Emerging evidence shows that miR-1266 has great influence on tumor cell migration and invasion. In order to clarify the role of miR-1266 in CC, we collected serum from CC, high-grade squamous intraepithelial lesion (HSIL), low-grade squamous intraepithelial lesion (LSIL) and normal control (NC), collected tissues from CC and control group (CG), and followed up 50 CC patients. We used HeLa and SiHa cells to clarify the roles of miR-1266 on cell proliferation, migration and invasion. The CC mouse model was conducted to prove the role of miR-1266 on tumorigenesis. qRT-PCR was used to measure the expressions of miR-1266 and DAB2IP mRNA. Western blot was used to determine the expression of DAB2IP protein. Cell counting kit-8 proliferation assay (CCK-8), Colony formation assay, Wound-healing assay and Transwell invasion assay were used to determine the cell survival, proliferative, migrative and invasive abilities. Our study found that miR-1266 had a rising trend in serum from NC to LSIL to HSIL to CC, and increased in CC tissues. High expression serum miR-1266 had lower overall survival rates than patients with miR-1266 low expression. MiR-1266 promoted cell viability, proliferation, migration and invasion by targeting DAB2IP. And miR-1266 could promote tumorigenesis in vivo. In conclusion, miR-1266 could be used as a new biomarker for diagnosis, prediction and treatment of CC in the future.  相似文献   

7.
Ovarian cancer presents as malignant tumors in the female reproductive system with high mortality. MicroRNAs are involved in the progression of ovarian cancer; however, the regulatory relationship among miRs remains unclear. In our study, we verified that both miR-145 and miR-133b messenger RNA (mRNA) levels in ovarian cancer tissues were lower than in normal ovarian tissues, and their mRNA level in serum of patients with ovarian cancer was reduced. We demonstrated miR-145 targeted c-myc, and c-myc interacted physically with DNMT3A in ovarian cancer cells. We confirmed that c-myc recruited DNMT3A to the miR-133b promoter. miR-133b overexpression also inhibited target gene PKM2 expression along with the Warburg effect. Our results indicate that miR-145 inhibited the Warburg effect through miR-133b/PKM2 pathways, which may improve approaches to ovarian cancer diagnosis and treatment.  相似文献   

8.
In the present study, we investigated the roles and molecular mechanisms of miR-320a in human nasopharyngeal carcinoma (NPC). miR-320a expression was strongly reduced in NPC tissues and cell lines. Overexpression of miR-320a significantly suppressed NPC cell growth, migration, invasion and tumor growth in a xenograft mouse model. A luciferase reporter assay revealed that miR-320a could directly bind to the 3′ UTR of BMI-1. Overexpression of BMI-1 rescued miR-320a-mediated biological function. BMI-1 expression was found to be up-regulated and inversely correlated with miR-320a expression in NPC. Collectively, our data indicate that miR-320a plays a tumor suppressor role in the development and progression of NPC and may be a novel therapeutic target against NPC.  相似文献   

9.
MicroRNAs (miRNAs), a group of small noncoding RNAs, are widely involved in the regulation of gene expression via binding to complementary sequences at 3′-untranslated regions (3′-UTRs) of target messenger RNAs. Recently, downregulation of miR-133b has been detected in various human malignancies. Here, the potential biological role of miR-133b in bladder cancer (BC) was investigated. In this study, we found the expression of miR-133b was markedly downregulated in BC tissues and cell lines (5637 and T24), and was correlated with poor overall survival. Notably, transgelin 2 (TAGLN2) was found to be widely upregulated in BC, and overexpression of TAGLN2 also significantly increased risks of advanced TMN stage. We further identified that upregulation of miR-133b inhibited glucose uptake, invasion, angiogenesis, colony formation and enhances gemcitabine chemosensitivity in BC cell lines by targeting TAGLN2. Additionally, we showed that miR-133b promoted the proliferation of BC cells, at least partially through a TAGLN2-mediated cell cycle pathway. Our results suggest a novel miR-133b/TAGLN2/cell cycle pathway axis controlling BC progression; a molecular mechanism which may offer a potential therapeutic target.  相似文献   

10.
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.  相似文献   

11.
12.
MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.  相似文献   

13.
14.
Eye absent (Eya) proteins are involved in cell fate determination in a broad spectrum of cells and tissues. Aberrant expression of Eya2 has been documented in a variety of cancers and correlates with clinical outcome. However, whether microRNAs (miRNAs) can regulate Eya2 expression remains unknown. Here, we show that miR-30a represses Eya2 expression by binding to the 3′-untranslated region of Eya2. Overexpression of Eya2 in miR-30a-transfected breast cancer cells effectively rescued the inhibition of cell proliferation and migration caused by miR-30a. Knockdown of Eya2 by small-interfering RNA (siRNA) in breast cancer cells mimicked the effect induced by miR-30a and abolished the ability of miR-30a to regulate breast cancer cell proliferation and migration. The miR-30a/Eya2 axis could regulate G1/S cell cycle progression, accompanied by the modulation of expression of cell cycle-related proteins, including cyclin A, cyclin D1, cyclin E, and c-Myc. Moreover, miR-30a expression was downregulated in breast cancer patients, and negatively correlated with Eya2, which was upregulated in breast cancer patients. These data suggest that the miR-30a/Eya2 axis may play an important role in breast cancer development and progression and that miR-30a activation or Eya2 inhibition may be a useful strategy for cancer treatment.  相似文献   

15.
Lung carcinoma is the most common type of malignant tumors globally, and its molecular mechanisms remained unclear. With the aim to investigate the effects of microRNA (miR)-377-5p on the cell development, invasion, metastasis, and cycle of lung carcinoma, this study was performed. We evaluated miR-377-5p expression levels in lung cancer tissues and cell models. Cell viability, proliferation, migration, invasion abilities, and cell cycle distribution were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, crystal violet, transwell, and flow cytometry assay. Furthermore, expression levels of protein kinase B α subunit (AKT1) and proteins related to cell cycle and epithelial-mesenchymal transition (EMT) were assessed using Western blot analysis and quantitative real-time polymerase chain reaction. These results suggested that miR-377-5p was downregulated in vivo and in cell models, and miR-377-5p overexpression inhibited cell viability, proliferation, migration, invasion, and induced cell-cycle arrest. In addition, as a target of miR-377-5p, AKT1 alleviated the decreases of cell viability, proliferation, migration, invasion, the S-phase cells, the expression of cyclin D1, fibronectin, and vimentin, as well as the increases of the G0/G1-phase cells, the expression of Foxo1, p27 kip1, p21 Cip1 and E-cadherin when miR-377-5p overexpressed. In conclusion, miR-377-5p inhibited cell development and regulated cell cycle distribution and EMT by targeting AKT1, which provided a theoretical basis for further study of lung carcinoma therapeutics.  相似文献   

16.
miR-625 has been reported to exhibit abnormal expression in esophageal cancer (EC), but the mechanism and functions of miR-625 in esophageal cancer remain unclear. miR-625 down-regulation and Sox2 up-regulation were validated by qRT-PCR in 158 EC samples. Low expression of miR-625 promotes cell proliferation and invasion, while high expression of miR-625 has the opposite effect. Sox2, a target gene of miR-625, was examined by luciferase assay and western blot. Our data suggest that miR-625 may regulate the biological processes of EC via controlling Sox2 expression.  相似文献   

17.
18.
19.
目的探讨环状RNA 0000218(circ_0000218)是否通过靶向吸附miR-1182从而影响宫颈癌HeLa细胞增殖、迁移和侵袭。方法采用实时荧光定量PCR(RT-qPCR)技术分析43例宫颈癌患者癌组织、癌旁组织中circ_0000218和miR-1182的表达水平。根据转染序列不同分为si-NC组、si-circ_0000218组、miR-NC组、miR-1182组、pcDNA组、pcDNAcirc_0000218组、si-circ_0000218+anti-miR-NC组、si-circ_0000218+anti-miR-1182组。运用细胞计数试剂盒(CCK-8)法、Transwell实验分析circ_0000218和miR-1182表达对HeLa细胞增殖、迁移和侵袭的影响。蛋白质印迹法检测Ki-67、基质金属蛋白酶2(MMP-2)和MMP9蛋白表达。双荧光素酶报告实验和RT-qPCR分析circ_0000218和miR-1182的靶向关系。癌旁组织与宫颈癌组织比较采用配对t检验,两组间比较采用独立样本t检验进行统计学分析。结果宫颈癌组织中circ_0000218表达量高于癌旁组织(4.17±0.32比1.00±0.05),而miR-1182表达量低于癌旁组织(0.33±0.03比1.00±0.05),差异具有统计学意义(P均<0.001)。与si-NC组比较,si-circ_0000218组HeLa细胞增殖活力(0.86±0.04比0.37±0.03)、迁移数量[(86.73±7.13)个比(38.52±3.19)个]和侵袭数量[(66.80±4.95)个比(26.58±2.55)个]以及Ki-67(0.57±0.05比0.18±0.02)、MMP-2(0.74±0.07比0.28±0.03)和MMP-9蛋白表达量(0.64±0.04比0.22±0.02)降低,差异有统计学意义(P均<0.001).与miR-NC组比较,miR-1182组HeLa细胞增殖活力(0.88±0.04比0.46±0.04)、迁移数量[(89.74±5.53)个比(46.63±3.79)个]和侵袭数量[(68.03±4.34)个比(34.63±3.37)个]以及Ki-67(0.59±0.04比0.24±0.02)、MMP-2(0.76±0.05比0.33±0.03)和MMP-9蛋白表达量(0.66±0.04比0.29±0.03)降低,差异有统计学意义(P均<0.001)。circ_0000218靶向负调控miR-1182表达。与si-circ_0000218+anti-miR-NC组比较,si-circ_0000218+anti-miR-1182组HeLa细胞增殖活力(0.35±0.03比0.76±0.04)、迁移数量[(35.58±3.11)个比(77.04±4.08)个]和侵袭数量[(25.44±2.29)个比(57.61±3.47)个]以及Ki-67(0.16±0.02比0.46±0.04)、MMP-2(0.26±0.02比0.65±0.04)和MMP-9蛋白表达量(0.20±0.02比0.57±0.04)升高,差异有统计学意义(P均<0.001)。结论circ_0000218通过靶向吸附miR-1182可促进宫颈癌HeLa细胞增殖、迁移和侵袭。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号