首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.  相似文献   

2.
Smooth muscle cell migration, proliferation, and deposition of extracellular matrix are key events in atherogenesis and restenosis development. To explore the mechanisms that regulate smooth muscle cell function, we have investigated whether perlecan, a basement membrane heparan sulfate proteoglycan, modulates interaction between smooth muscle cells and other matrix components. A combined substrate of fibronectin and perlecan showed a reduced adhesion of rat aortic smooth muscle cells by 70-90% in comparison to fibronectin alone. In contrast, perlecan did not interfere with cell adhesion to laminin. Heparinase treated perlecan lost 60% of its anti-adhesive effect. Furthermore, heparan sulfate as well as heparin reduced smooth muscle cell adhesion when combined with fibronectin whereas neither hyaluronan nor chondroitin sulfate had any anti-adhesive effects. Addition of heparin as a second coating to a preformed fibronectin matrix did not affect cell adhesion. Cell adhesion to the 105- and 120 kDa cell-binding fragments of fibronectin, lacking the main heparin-binding domains, was also inhibited by heparin. In addition, co-coating of fibronectin and (3)H-heparin showed that heparin was not even incorporated in the substrate. Morphologically, smooth muscle cells adhering to a substrate prepared by co-coating of fibronectin and perlecan or heparin were small, rounded, lacked focal contacts, and showed poorly developed stress fibers of actin. The results show that the heparan sulfate chains of perlecan lead to altered interactions between smooth muscle cells and fibronectin, possibly due to conformational changes in the fibronectin molecule. Such interactions may influence smooth muscle cell function in atherogenesis and vascular repair processes.  相似文献   

3.
Our goal in this study was to define the mechanisms by which fetuin-A mediates the adhesion of tumor cells. The data show that in the absence of fetuin-A, detached tumor cells secrete exosomes that contain most of the known exosomal associated proteins but lack the capacity to mediate cellular adhesion. In the presence of fetuin-A, the cells secrete exosomes, which contain, in addition to the other exosomal proteins, fetuin-A, plasminogen and histones. These exosomes mediate adhesion and cell spreading. Plasminogen is a participant in this novel adhesion mechanism. The data suggest that these exosomes play a role in tumor progression.  相似文献   

4.
The involvement of embryonic cell surface proteoglycans in the attachment and outgrowth of cultured mouse embryos has been investigated. Several lines of evidence indicate that periimplantation stage blastocysts express heparin/heparan sulfate proteoglycans on their cell surfaces that can mediate embryo attachment and trophoblast outgrowth on a variety of matrices. First, in the presence of soluble heparin, the rate at which embryos attach and outgrow on laminin, fibronectin, or monolayers of uterine epithelial cells is reduced considerably. In the case of fibronectin, the rate of outgrowth in the presence of the heparin is slower than in the presence of the Arg-Gly-Asp-Ser-containing peptide that is recognized by a fibronectin receptor. Embryos also attach and exhibit a limited ability to outgrow on platelet factor IV, a heparin binding protein that does not possess the additional binding domains of laminin or fibronectin. Attachment on platelet factor IV is inhibited by heparin. Second, cell surface digestion of attachment-component embryos with heparinase, but not chondroitinase ABC, slows the rate of outgrowth on tissue culture plates in the presence of serum. Third, selective staining for sulfated molecules on the trophectoderm surface of periimplantation stage embryos indicates that such molecules are abundant and uniformly distributed on these cell surfaces. Last, heparin/heparan sulfate proteoglycans are detected as major cell surface components of embryos using vectorial labeling with lactoperoxidase and Na125I. Collectively, these data indicate that heparin/heparan sulfate-bearing molecules have a direct role in attachment and outgrowth of implantation stage blastocysts.  相似文献   

5.
The effects of added soluble glycosaminoglycans (GAGs) on adhesion and neurite formation by cultured PC12 pheochromocytoma cells on several substrates were tested. PC12 cells adhere more rapidly to Petri plastic coated with fibronectin, laminin, poly-L-lysine, or conA, than to either uncoated Petri plastic or tissue culture plastic. Adhesion to poly-L-lysine, fibronectin- and laminin-coated dishes was significantly inhibited by added dextran sulfate and to a lesser extent heparin--but not by chondroitin sulfate. PC12 adhesion to fibronectin could also be totally inhibited by the putative fibronectin cell binding tetrapeptide L-arginyl-glycyl-L-aspartyl-L-serine (Pierschbacher, MD & Ruoslahti, E, Nature 309 (1984) 30). The inhibitory effects of combinations of this tetrapeptide and heparin or dextran sulfate (but not chondroitin sulfate or hyaluronic acid) were additive. Nerve growth factor (NGF) pretreatment increased the percentage of PC12 cells adherent to all substrates and reduced the GAG inhibition of adhesion. PC12 cells previously treated with NGF to induce morphologic differentiation will rapidly re-extend neurites when plated on all four substrates. On fibronectin and poly-L-lysine-coated dishes this neurite growth is inhibited by added heparin and dextran sulfate, while on laminin it is not. Neurite formation on fibronectin-coated dishes was also inhibited by low concentrations of fibronectin tetrapeptide. In summary, PC12 adhesion and neurite formation can be inhibited by sulfated GAGs on some substrates, including fibronectin, but not other substrates, suggesting that these cells have at least two independent molecular adhesion mechanisms.  相似文献   

6.
Material on the surface of activated T-cells was displaced following incubation with a sulfated polysaccharide, dextrin 2-sulfate (D2S), and purified by anion-exchange chromatography. This revealed a complex comprising histones H2A, H2B, H3, and H4 and DNA fragmented into 180-base pair units characteristic of mono-, di-, tri, and polynucleosomes, a pattern of fragmentation similar to that found in apoptotic cells. An antibody raised against the purified nucleosome preparation bound to the plasma membrane of activated T-cells confirming the surface location of nucleosomes. The interaction of sulfated polysaccharides with nucleosomes was investigated using a biotinylated derivative of D2S. It was found that sulfated polysaccharides bound to nucleosomes via the N termini of histones, especially H2A and H2B. Treatment of T-cells with either heparinase or heparitinase abolished nucleosome binding to plasma membranes. This suggests that nucleosomes are anchored to the surface of T-cells by heparan sulfate proteoglycans through an ionic interaction with the basic N-terminal residues in the histones. Furthermore, nucleosomes bound to the cell surface in this manner are then able to bind other sulfated polysaccharides, such as D2S, heparin, or dextran sulfate, through unoccupied histone N termini forming a complex comprising cell surface heparan sulfate proteoglycans, nucleosomes, and sulfated polysaccharides.  相似文献   

7.
When normal or SV40-transformed Balb/c 3T3 cells are treated with the Ca++-specific chelator EGTA, they round up and pull away from their footpad adhesion sites to the serum-coated tissue culture substrate, as shown by scanning electron microscope studies. Elastic membranous retraction fibers break upon culture agitation, leaving adhesion sites as substrate-attached material (SAM) (Cells leave “footprints” of substrate adhesion sites during movement by a very similar process.) SAM contains 1–2% of the cell's total protein and phospholipid content and 5–10% of its glucosamine-radiolabeled polysaccharide, most of which is glycosaminoglycan (GAG). By one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, there is considerable enrichment in SAM for specific GAGs; for the glycoprotein fibronectin; and for the cytoskeletal proteins actin, myosin, and the subunit protein of the 10 nm-diameter filaments. Fibrillar fibronectin of cellular origin and substratum bound fibronectin of serum origin (cold-insoluble globulin, CIg) have been visualized by immunofluorescence microscopy. The GAG composition in SAM has been examined under different cellular growth and attachment conditions. Heparan sulfate content correlates with glycopeptide content (derived from glycoprotein). Newly attaching cells deposit SAM with principally heparan sulfate and fibronectin and little of the other GAGs. Hyaluronate and chrondroitin proteoglycans are coordinately deposited in SAM as cells begin spreading and movement over the substrate. Cells attaching to serum-coated or CIg coated substrates deposited SAM with identical compositions. The proteoglycan nature of the GAGs in SAM has been examined as well as the ability of proteoglycans to form two classes of reversibly dissociable “supramolecular complexes” - one class with heparan sulfate and glycopeptide-containing material and the second with hyaluronate-chondroitin complexes. Enzymatic digestion of “intact” SAM with trypsin or testicular hyaluronidase indicates that (1) only a small portion of long-term radiolabeled fibronectin and cytoskeletal protein is bound to the substrate via hyaluronate or chondroitin classes of GAG; (2) most of the fibronectin, cytoskeletal protein and heparan sulfate coordinately resist solubilization; and (3) newly synthesized fibronectin, which is metabolically labile in SAM, is linked to SAM by hyaluronate- and/or chondroitin-dependent binding. All of our studies indicate that heparan sulfate is a direct mediator of adhesion of cells to the substrate, possibly by binding to both cell-surface fibronectin and substrate-bound CIg in the serum coating; hyaluronate-chondroitin complexes in SAM appear to be most important in motility of cells by binding and labilizing fibronectin at the periphery of footpad adhesions, with subsequent cytoskeletal disorganization.  相似文献   

8.
We used antibodies raised against both a heparan sulfate proteoglycan purified from a mouse sarcoma and a chondroitin sulfate proteoglycan purified from a rat yolk sac carcinoma to study the appearance and distribution of proteoglycans in cultured cells. Normal rat kidney cells displayed a fibrillar network of immunoreactive material at the cell surface when stained with antibodies to heparan sulfate proteoglycan, while virally transformed rat kidney cells lacked such a surface network. Antibodies to chondroitin sulfate proteoglycan revealed a punctate pattern on the surface of both cell types. The distribution of these two proteoglycans was compared to that of fibronectin by double-labeling immunofluorescent staining. The heparan sulfate proteoglycan was found to codistribute with fibronectin, and fibronectin and laminin gave coincidental stainings. The distribution of chondroitin sulfate proteoglycan was not coincidental with that of fibronectin. Distinct fibers containing fibronectin but lacking chondroitin sulfate proteoglycan were observed. When the transformed cells were cultured in the presence of sodium butyrate, their morphology changed, and fibronectin, laminin, and heparan sulfate proteoglycan appeared at the cell surface in a pattern resembling that of normal cells. These results suggest that fibronectin, laminin, and heparan sulfate proteoglycan may be complexed at the cell surface. The proteoglycan may play a central role in assembly of such complexes since heparan sulfate has been shown to interact with both fibronectin and laminin.  相似文献   

9.
Both newly formed and long-term culture-generated substratum adhesion sites, generated by EGTA-mediated detachment of Balb/c SVT2 cells, were extracted with an eta-octyl-beta-D-glucopyranoside buffer containing salt and several protease inhibitors under conditions which result in maximal solubilization of the sulfate-radiolabeled proteoglycans. Because of the functional importance of heparan sulfate proteoglycans in the fibronectin-dependent cell-substratum adhesion processes of these cells, these proteoglycans were fractionated on affinity columns of octyl-Sepharose or of the heparan sulfate-binding proteins platelet factor 4 or plasma fibronectin. These affinity matrices resolved a number of both binding and nonbinding classes of heparan sulfate proteoglycan from both types of adhesion sites. In particular, the platelet factor 4 column could resolve several proteoglycans with differing binding affinities. Approximately twice as much heparan sulfate proteoglycan from newly formed sites bound to all three matrices as proteoglycan from longterm sites. The proteoglycan which bound to one matrix was then tested for binding to a second matrix; this approach resolved a number of biochemically distinct species. For example, one-half of the fibronectin-Sepharose-binding fraction from the long-term sites could also bind to platelet factor 4-Sepharose; however, over 90% of the fibronectin-binding fraction from newly formed sites could bind to platelet factor 4. A major portion of the octyl-Sepharose-binding fractions of the original extracts could bind to fibronectin-Sepharose. These studies indicate that some of these proteoglycans have overlapping affinities for fibronectin, platelet factor 4, and octyl-Sepharose and that a portion of the heparan sulfate proteoglycan from these adhesion sites cannot bind to any of these affinity matrices. These results are discussed with regard to the functional significance of these various heparan sulfate proteoglycans in mediating adhesion to extracellular matrices containing fibronectin or platelet factor 4.  相似文献   

10.
We have demonstrated previously that chick embryo fibroblasts synthesize and secrete a large chondroitin sulfate proteoglycan (designated PG-M) that binds to fibronectin. We now report the possibility that PG-M interactions with cell surfaces can modulate cell-substrate adhesion. When PG-M was added to the medium, various types of trypsinized cells failed to adhere not only to fibronectin-coated substrates but also to collagen- or vitronectin-coated substrates. Adhesion of the cells to laminin or glycyl-arginyl-glycyl-aspartyl-serine derivatized serum albumin (arginyl-glycyl-aspartic acid-containing molecules with no capacity to bind PG-M) was also inhibited by PG-M. Treatment of the proteoglycan with either proteolytic enzymes or chondroitinase abolished its inhibitory effects on the cell adhesion. These results suggest that direct binding between PG-M and fibronectin, if any, is not a cause of the inhibition by PG-M and that only the proteoglycan form is responsible for the activity. When the immobilization of added PG-M to available plastic surfaces of coated dishes was blocked by pretreating the dishes with serum albumin, the inhibitory effect of PG-M was abolished, suggesting that the immobilized fraction of PG-M can act as a cell adhesion inhibitor. In immobilized form, both cartilage chondroitin sulfate proteoglycan (designated PG-H) and chondroitin sulfate-derivatized serum albumin also inhibited cell adhesion. In contrast, heparan sulfate proteoglycan form LD and heparan sulfate-derivatized serum albumin had far lower inhibitory activities, indicating that the active site for the interaction between cells and PG-M is on the chondroitin sulfate chains.  相似文献   

11.
The intracellular amastigote form of leishmania is responsible for the cell-to-cell spread of leishmania infection in the mammalian host. In this report, we identify a high-affinity, heparin-binding activity on the surface of the amastigote form of leishmania. Amastigotes of Leishmania amazonensis bound approximately 120,000 molecules of heparin per cell, with a Kd of 8.8 x 10(-8) M. This heparin-binding activity mediates the adhesion of amastigotes to mammalian cells via heparan sulfate proteoglycans, which are expressed on the surface of mammalian cells. Amastigotes bound efficiently to a variety of adherent cells which express cell-surface proteoglycans. Unlike wild-type CHO cells, which bound amastigotes avidly, CHO cells with genetic deficiencies in heparan sulfate proteoglycan biosynthesis or cells treated with heparitinase failed to bind amastigotes even at high parasite-input dosages. Cells which express normal levels of undersulfated heparan bound amastigotes nearly as efficiently as did wild-type cells. The adhesion of amastigotes to wild-type nonmyeloid cells was almost completely inhibited by the addition of micromolar amounts of soluble heparin or heparan sulfate but not by the addition of other sulfated polysaccharides.l Binding of amastigotes to macrophages, however, was inhibited by only 60% after pretreatment of amastigotes with heparin, suggesting that macrophages have an additional mechanism for recognizing amastigotes. These results suggest that leishmania amastigotes express a high-affinity, heparin-binding activity on their surface which can interact with heparan sulfate proteoglycans on mammalian cells. This interaction may represent an important first step in the invasion of host cells by amastigotes.  相似文献   

12.
Syndecans are transmembrane proteoglycans expressed on adherent cells. They are a family of four proteins, which participate in cell-matrix adhesion, the regulation of growth factors (FGFs, VEGF, HGF) binding and signaling. The extracellular domain of syndecans contains heparan sulfate and chondroitin sulfate glycosaminoglycan chains. Syndecans have transmembrane region and a short cytoplasmic domain. The cytoplasmic domain attaches activated protein kinase Calpha, phosphatidyl-inositol-4,5-bisphosphate, syntenin, beta-catenin and many others molecules. Syndecans bind numerous ligands, which are present in extracellular matrix: growth factors, enzymes, extracellular matrix molecules (fibronectin, laminin). They form connections with actin cytoskeleton. The changes in syndecan expression influence on cell adhesion and migration, structure of focal contacts and cytoskeleton. Syndecans participate in cell differentiation and tissue regeneration.  相似文献   

13.
Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.  相似文献   

14.
Herndon  ME; Stipp  CS; Lander  AD 《Glycobiology》1999,9(2):143-155
The method of affinity coelectrophoresis was used to study the binding of nine representative glycosaminoglycan (GAG)-binding proteins, all thought to play roles in nervous system development, to GAGs and proteoglycans isolated from developing rat brain. Binding to heparin and non-neural heparan and chondroitin sulfates was also measured. All nine proteins-laminin-1, fibronectin, thrombospondin-1, NCAM, L1, protease nexin-1, urokinase plasminogen activator, thrombin, and fibroblast growth factor-2-bound brain heparan sulfate less strongly than heparin, but the degree of difference in affinity varied considerably. Protease nexin-1 bound brain heparan sulfate only 1.8- fold less tightly than heparin (Kdvalues of 35 vs. 20 nM, respectively), whereas NCAM and L1 bound heparin well (Kd approximately 140 nM) but failed to bind detectably to brain heparan sulfate (Kd>3 microM). Four proteins bound brain chondroitin sulfate, with affinities equal to or a few fold stronger than the same proteins displayed toward cartilage chondroitin sulfate. Overall, the highest affinities were observed with intact heparan sulfate proteoglycans: laminin-1's affinities for the proteoglycans cerebroglycan (glypican-2), glypican-1 and syndecan-3 were 300- to 1800-fold stronger than its affinity for brain heparan sulfate. In contrast, the affinities of fibroblast growth factor-2 for cerebroglycan and for brain heparan sulfate were similar. Interestingly, partial proteolysis of cerebroglycan resulted in a >400- fold loss of laminin affinity. These data support the views that (1) GAG-binding proteins can be differentially sensitive to variations in GAG structure, and (2) core proteins can have dramatic, ligand-specific influences on protein-proteoglycan interactions.   相似文献   

15.
Cell adhesion to extracellular matrix molecules such as fibronectin involves complex transmembrane signaling processes. Attachment and spreading of primary fibroblasts can be promoted by interactions of cell surface integrins with RGD-containing fragments of fibronectin, but the further process of focal adhesion and stress fiber formation requires additional interactions. Heparin-binding fragments of fibronectin can provide this signal. The COOH-terminal heparin-binding domain of fibronectin contains five separate heparin-binding amino acid sequences. We show here that all five sequences, as synthetic peptides coupled to ovalbumin, can support cell attachment. Only three of these sequences can promote focal adhesion formation when presented as multicopy complexes, and only one of these (WQPPRARI) retains this activity as free peptide. The major activity of this peptide resides in the sequence PRARI. The biological response to this peptide and to the COOH-terminal fragment may be mediated through cell surface heparan sulfate proteoglycans because treatment of cells with heparinase II and III, or competition with heparin, reduces the response. Treatment with chondroitinase ABC or competition with chondroitin sulfate does not.  相似文献   

16.
Embryonic chick neural retina cells in culture release complexes of proteins and glycosaminoglycans, termed adherons, which stimulate cell-substratum adhesion when adsorbed to nonadhesive surfaces. Two distinct retinal cell surface macromolecules, a 170,000-mol-wt glycoprotein and a heparan sulfate proteoglycan; are components of adherons that can independently promote adhesion when coated on inert surfaces. The 170,000-mol-wt polypeptide contains a heparin-binding domain, as indicated by its retention on heparin-agarose columns and its ability to bind [3H]heparin in solution. The attachment of embryonic chick retinal cells to the 170,000-mol-wt protein also depends upon interactions between the protein and the heparan sulfate proteoglycan, since heparan sulfate in solution disrupts adhesion of chick neural retina cells to glass surfaces coated with the 170,000-mol-wt protein. This adhesion is not impaired by chondroitin sulfate or hyaluronic acid, which indicates that inhibition by heparan sulfate is specific. Polyclonal antisera directed against the cell surface heparan sulfate proteoglycan also inhibit attachment of retinal cells to the 170,000-mol-wt protein, which suggests that cell-adheron binding is mediated in part by interactions between cell surface heparan sulfate proteoglycan and 170,000-mol-wt protein contained in the adheron particles. Previous studies have indicated that this type of cell-substratum adhesion is tissue-specific since retina cells do not attach to muscle adherons. Schubert D., M. LaCorbiere, F. G. Klier, and C. Birdwell, 1983, J. Cell Biol. 96:990-998.  相似文献   

17.
Co-signaling events between integrins and cell surface proteoglycans play a critical role in the organization of the cytoskeleton and adhesion forces of cells. These processes, which appear to be responsible for maintaining intraocular pressure in the human eye, involve a novel cooperative co-signaling pathway between alpha5beta1 and alpha4beta1 integrins and are independent of heparan sulfate proteoglycans. Human trabecular meshwork cells isolated from the eye were plated on type III 7-10 repeats of fibronectin (alpha5beta1 ligand) in the absence or presence of the heparin (Hep) II domain of fibronectin. In the absence of the Hep II domain, cells had a bipolar morphology with few focal adhesions and stress fibers. The addition of the Hep II domain increased cell spreading and the numbers of focal adhesions and stress fibers. Cell spreading and stress fiber formation were not mediated by heparan sulfate proteoglycans because treatment with chlorate, heparinase, or soluble heparin did not prevent Hep II domain-mediated cell spreading. Cell spreading and stress fiber formation were mediated by alpha4beta1 integrin because soluble anti-alpha4 integrin antibodies inhibited Hep II domain-mediated cell spreading and soluble vascular cell adhesion molecule-1 (alpha4beta1 ligand)-induced cell spreading. This is the first demonstration of the Hep II domain mediating cell spreading and stress fiber formation through alpha4beta1 integrin. This novel pathway demonstrates a cooperative, rather than antagonistic, role between alpha5beta1 and alpha4beta1 integrins and suggests that interactions between the Hep II domain and alpha4beta1 integrin could modulate the strength of cytoskeleton-mediated processes in the trabecular meshwork of the human eye.  相似文献   

18.
Cell surface heparan sulfate (HS) proteoglycans are required in development and postnatal repair. Important classes of ligands for HS include growth factors and extracellular matrix macromolecules. For example, the focal adhesion component syndecan-4 interacts with the III(12-14) region of fibronectin (HepII domain) through its HS chains. The fine structure of HS is critical to growth factor responses, and whether this extends to matrix ligands is unknown but is suggested from in vitro experiments. Cell attachment to HepII showed that heparin oligosaccharides of >or=14 sugar residues were required for optimal inhibition. The presence of N-sulfated glucosamine in the HS was essential, whereas 2-O-sulfation of uronic acid or 6-O-sulfation of glucosamine had marginal effects. In the more complex response of focal adhesion formation through syndecan-4, N-sulfates were again required and also glucosamine 6-O-sulfate. The significance of polymer N-sulfation and sulfated domains in HS was confirmed by studies with mutant Chinese hamster ovary cells where heparan sulfation was compromised. Finally, focal adhesion formation was absent in fibroblasts synthesizing short HS chains resulting from a gene trap mutation in one of the two major glucosaminoglycan polymerases (EXT1). Several separate, specific properties of cell surface HS are therefore required in cell adhesion responses to the fibronectin HepII domain.  相似文献   

19.
Substratum adhesion sites from murine Balb/c SVT2 fibroblasts are enriched in heparan sulfate proteoglycans which have been implicated in mediating adhesion of these cells to a fibronectin-adsorbed tissue culture substratum. Most of the heparan sulfate isolated from newly formed adhesion sites is found covalently attached to protein as proteoglycan while a significant portion of heparan sulfate from older sites has been identified as a single-chain species. This observation suggests that there may be catabolism of the heparan sulfate proteoglycan during the "maturation" of these adhesion sites at the cell's undersurface. Zwittergent 3-12 selectively extracts the single-chain class of heparan sulfate from either newly formed or "mature" adhesion sites while leaving the proteoglycan firmly bound in these sites. In an effort to further characterize the metabolism of these proteoglycans, substratum adhesion sites were isolated at various times after the cells had been pulse-radiolabeled using radioactive sulfate and subsequently chased. Greater than 80% of the sulfate-radiolabeled material is lost from the substratum-attached material within 24-48 h. Characterization of both the Zwittergent-soluble and -resistant heparan sulfate indicated that there was an initial accumulation followed by a rapid loss of a portion of the radiolabeled heparan sulfate as the single-chain Zwittergent-soluble class. However, most of the heparan sulfate proteoglycan was lost from the adhesion sites following approximately a 4-h time lag during the chase period without going through a smaller molecular weight intermediate. The turnover properties of the heparan sulfate proteoglycan in the EGTA-detachable cells were different from those in the substratum-attached fraction of the cell. The significance of these two different mechanisms of turnover of heparan sulfate proteoglycan in adhesion sites is discussed in relation to the role of this proteoglycan in mediating adhesion processes.  相似文献   

20.
Two domains of fibronectin deliver two different but cooperative signals required for focal adhesion formation. The signal from the cell-binding domain is mediated by integrins, whereas the signal from the heparin-binding domain is recognized by heparan sulfate proteoglycans, of which syndecan-4 has been hypothesized to be involved in focal adhesion formation. We generated mice deficient in syndecan-4 to study its role directly. Even in fibroblasts from syndecan-4-deficient mice, focal adhesions were formed, and actin fibers terminated normally at focal adhesions when they were cultured on coverslips coated with fibronectin or with a mixture of its cell-binding and heparin-binding fragments. However, when the cells were cultured on the cell-binding fragment and the heparin-binding fragment was added to the medium, focal adhesion formation was impaired in the syndecan-4 null fibroblasts as compared with that in wild-type cells. Therefore, syndecan-4 is essential for promoting focal adhesion formation only when the signal of the heparin-binding domain of fibronectin is delivered as a soluble form, most probably from the apical surface. When the signal is delivered as a substratum-bound form, other molecule(s) also participate(s) in the signal reception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号