共查询到20条相似文献,搜索用时 0 毫秒
1.
《Bioorganic & medicinal chemistry》2014,22(15):4028-4041
The reaction of thiourea with O-perbenzoylated C-(1-bromo-1-deoxy-β-d-glucopyranosyl)formamide gave the new anomeric spirocycle 1R-1,5-anhydro-d-glucitol-spiro-[1,5]-2-imino-1,3-thiazolidin-4-one. Acylation and sulfonylation with the corresponding acyl chlorides (RCOCl or RSO2Cl where R = tBu, Ph, 4-Me-C6H4, 1- and 2-naphthyl) produced the corresponding 2-acylimino- and 2-sulfonylimino-thiazolidinones, respectively. Alkylation by MeI, allyl-bromide and BnBr produced mixtures of the respective N-alkylimino- and N,N′-dialkyl-imino-thiazolidinones, while reactions with 1,2-dibromoethane and 1,3-dibromopropane furnished spirocyclic 5,6-dihydro-imidazo[2,1-b]thiazolidin-3-one and 6,7-dihydro-5H-thiazolidino[3,2-a]pyrimidin-3-one, respectively. Removal of the O-benzoyl protecting groups by the Zemplén protocol led to test compounds most of which proved micromolar inhibitors of rabbit muscle glycogen phosphorylase b (RMGPb). Best inhibitors were the 2-benzoylimino- (Ki = 9 μM) and the 2-naphthoylimino-thiazolidinones (Ki = 10 μM). Crystallographic studies of the unsubstituted spiro-thiazolidinone and the above most efficient inhibitors in complex with RMGPb confirmed the preference and inhibitory effect that aromatic (and especially 2-naphthyl) derivatives show for the catalytic site promoting the inactive conformation of the enzyme. 相似文献
2.
The binding of beta- and gamma-cyclodextrins to glycogen phosphorylase b: kinetic and crystallographic studies 下载免费PDF全文
Pinotsis N Leonidas DD Chrysina ED Oikonomakos NG Mavridis IM 《Protein science : a publication of the Protein Society》2003,12(9):1914-1924
A number of regulatory binding sites of glycogen phosphorylase (GP), such as the catalytic, the inhibitor, and the new allosteric sites are currently under investigation as targets for inhibition of hepatic glycogenolysis under high glucose concentrations; in some cases specific inhibitors are under evaluation in human clinical trials for therapeutic intervention in type 2 diabetes. In an attempt to investigate whether the storage site can be exploited as target for modulating hepatic glucose production, alpha-, beta-, and gamma-cyclodextrins were identified as moderate mixed-type competitive inhibitors of GPb (with respect to glycogen) with K(i) values of 47.1, 14.1, and 7.4 mM, respectively. To elucidate the structural basis of inhibition, we determined the structure of GPb complexed with beta- and gamma-cyclodextrins at 1.94 A and 2.3 A resolution, respectively. The structures of the two complexes reveal that the inhibitors can be accommodated in the glycogen storage site of T-state GPb with very little change of the tertiary structure and provide a basis for understanding their potency and subsite specificity. Structural comparisons of the two complexes with GPb in complex with either maltopentaose (G5) or maltoheptaose (G7) show that beta- and gamma-cyclodextrins bind in a mode analogous to the G5 and G7 binding with only some differences imposed by their cyclic conformations. It appears that the binding energy for stabilization of enzyme complexes derives from hydrogen bonding and van der Waals contacts to protein residues. The binding of alpha-cyclodextrin and octakis (2,3,6-tri-O-methyl)-gamma-cyclodextrin was also investigated, but none of them was bound in the crystal; moreover, the latter did not inhibit the phosphorylase reaction. 相似文献
3.
John C. Lawrence Joseph Larner 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,582(3):402-411
Incubation of adipocytes in glucose-free medium with adrenocorticotrophic hormone, epinephrine, isoproterenol, or norepinephrine increased the concentration of cyclic AMP and the percentage of phosphorylase a activity, and decreased the percentage of glycogen synthase I activity. Glucose was essentially without effect on glycogen synthase or phosphorylase in either the presence or absence of epinephrine. Although glucose potentiated the action of insulin to activate glycogen synthase, the hexose did not enhance the effectiveness of insulin in the presence of epinephrine. Likewise, glucose did not increase the ability of insulin to oppose the activation of phosphorylase by epinephrine.The activation of glycogen synthase by insulin was not associated with a decrease in the concentration of cyclic AMP. Insulin partially blocked the rise in cyclic AMP due to isoproterenol, adrenocorticotrophic hormone, and norepinephrine. The maximum effects of isoproterenol on glycogen synthase and phosphorylase were observed when the concentration of cyclic AMP was increased twofold. However, insulin clearly opposed the changes in enzyme activity produced by isoproterenol (and also adrenocorticotrophic hormone, epinephrine and norepinephrine) even though concentrations of cyclic AMP were still increased three- to fourfold. Nicotinic acid opposed the increases in cyclic AMP due to adrenocorticotrophic hormone, isoproterenol and norepinephrine to the same extent as insulin; however, nicotinic acid was ineffective in opposing the activation of phosphorylase and inactivation of glycogen synthase produced by these agents. Thus, it is unlikely that the effects of insulin on glycogen synthase and phosphorylase result from an action of the hormone to decrease the concentration of cyclic AMP. 相似文献
4.
Gonzalo Izaguirre Alexandra Kikonyogo Regina Pietruszko 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》1998,119(4):747-754
Methylglyoxal was demonstrated to be a substrate for the isozymes E1, E2 and E3 of human aldehyde dehydrogenase. Pyruvate was the product from the oxidation of methylglyoxal by the three isozymes. At pH 7.4 and 25oC, the major and minor components of the E3 isozyme catalyzed the reaction with Vmax of 1.1 and 0.8 μmol NADH min−1 mg−1 protein, respectively, compared to 0.067 and 0.060 μmol NADH min−1 mg−1 protein for the E1 and E2 isozymes, respectively. The E2 isozyme had a Km for methylglyoxal of 8.6 μM, the lowest compared to 46 μM for E1 and 586 and 552 μM for the major and minor components of the E3 isozyme, respectively. Both components of the E3 isozyme showed substrate inhibition by methylglyoxal, with Ki values of 2.0 mM for the major component and 12 mM for the minor component at pH 9.0. Substrate inhibition by methylglyoxal was not observed with the E1 and E2 isozymes. Methylglyoxal strongly inhibited the glycolaldehyde activity of the E1 and E2 isozymes. Mixed-type models of inhibition were employed as an approach to calculate the inhibition constants, 44 and 10.6 μM for E1 and E2 isozymes, respectively. 相似文献
5.
Glycogen synthase kinase-5 (casein kinase-II) phosphorylates glycogen synthase on a serine termed site 5. This residue is just C-terminal to the 3 serines phosphorylated by glycogen synthase kinase-3, which are critical for the hormonal regulation of glycogen synthase in vivo. Although phosphorylation of site 5 does not affect the catalytic activity, it is demonstrated that this modification is a prerequisite for phosphorylation by glycogen synthase kinase-3. Since site 5 is almost fully phosphorylated in vivo under all conditions, the role of glycogen synthase kinase-5 would appear to be a novel one in forming the recognition site for another protein kinase 相似文献
6.
Gütschow M Kuerschner L Pietsch M Ambrozak A Neumann U Günther R Hofmann HJ 《Archives of biochemistry and biophysics》2002,402(2):180-191
A series of benzoxazinones was used to investigate the interaction of human cathepsin G with acyl-enzyme inhibitors. With respect to the primary specificity of cathepsin G, inhibitors with hydrophobic or basic residues at position 2 were included in the study. Parameters of the enzyme acylation and deacylation were determined by slow-binding kinetics in the presence of a chromogenic substrate. For selected inhibitors, the time course of the enzyme-catalyzed conversion of the inhibitors was followed. This approach was suitable to elucidate a rate-determining deacylation step. Docking simulations of the noncovalent enzyme-inhibitor complexes were performed and several clusters were analyzed for each inhibitor. The amino acids of the active site that participate in the binding of the inhibitors were determined. The arrangements in several clusters of an inhibitor were not uniform with respect to the orientation by which the inhibitor was bound in the S(1) pocket. Docking of the basic piperazino derivatives 6 and 10 indicated an interaction with Glu 226 at the bottom of the S(1) specificity pocket. The (N-methyl)benzylamino derivative 1 showed the strongest acylation rate (k(on)=1200 M(-1) s(-1)), which was attributed to a high extent of pseudo-productive orientations of the noncovalent preassociation complex. 相似文献
7.
Shamila S. Gunatilleke Cesar Augusto F. de Oliveira J. Andrew McCammon Amy M. Barrios 《Journal of biological inorganic chemistry》2008,13(4):555-561
Gold(I) compounds have been used in the treatment of rheumatoid arthritis for over 80 years, but the biological targets and
the structure–activity relationships of these drugs are not well understood. Of particular interest is the molecular mechanism
behind the antiarthritic activity of the orally available drug triethylphosphine(2,3,4,6-tetra-O-acetyl-β-1-d-thiopyranosato-S) gold(I) (auranofin, Ridaura). The cathepsin family of lysosomal, cysteine-dependent enzymes is an attractive biological
target of Au(I) and is inhibited by auranofin and auranofin analogs with reasonable potency. Here we employ a combination
of experimental and computational investigations into the effect of changes in the phosphine ligand of auranofin on its in
vitro inhibition of cathepsin B. Sequential replacement of the ethyl substituents of triethylphosphine by phenyl groups leads
to increasing potency in the resultant Au(I) complexes, due in large part to favorable interactions of the more sterically
bulky Au(I)–PR3 fragments with the enzyme active site. 相似文献
8.
Marinez de Oliveira Sousa Marcelo Matos Santoro 《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):317-325
Hydrolysis of D-valyl-L-leucyl-L-arginine p-nitroanilide by human tissue kallikrein (hK1) was studied in the absence and in the presence of increasing concentrations of the following chloride salts: sodium, potassium, calcium, magnesium and aluminium. The data indicate that the inhibition of hK1 by sodium, potassium, calcium and magnesium is linear competitive and that divalent cations are more potent inhibitors of hK1 than univalent cations. However the inhibition of hK1 by aluminium cation is linear mixed, with the cation being able to bind to both the free enzyme and the ES complex. This cation was the best hK1 inhibitor. Aluminium is not a physiological cation, but is a known neurotoxicant for animals and humans. The neurotoxic actions of aluminium may relate to neuro-degenerative diseases. 相似文献
9.
Plasmodium berghei-infected murine red cells possess protein kinase activity that is associated with the isolated parasites. Schizonts contain significantly higher levels of this protein kinase than the more immature forms, suggesting a relationship between this enzyme activity and parasite development. Partially purified protein kinase has a Km for ATP of approximately 30 microMs, whereas the Km for GTP is approximately 300 microMs and the substrate preference is phosvitin greater than casein much greater than histone greater than protamine. The Mg2+ optimum is 10-20 mM, and the protein kinase activity is stimulated by the polyamines spermine and spermidine. The flavone, quercetin, inhibits the protein kinase activity in a competitive manner with respect to ATP (Ki approximately 3 microMs), and P chabaudi also has a very similarly regulated protein kinase. Protein kinases from both species are very similar to the type I casein kinase. 相似文献
10.
11.
Nilusha Ragunathan Benjamin Pluvinage Elodie Sanfins Fernando Rodrigues-Lima Julien Dairou 《FEBS letters》2010,584(15):3366-29
Human arylamine N-acetyltransferase 1 (NAT1) is a xenobiotic-metabolizing enzyme that biotransforms aromatic amine chemicals. We show here that biologically-relevant concentrations of inorganic (Hg2+) and organic (CH3Hg+) mercury inhibit the biotransformation functions of NAT1. Both compounds react irreversibly with the active-site cysteine of NAT1 (half-maximal inhibitory concentration (IC50) = 250 nM and kinact = 1.4 × 104 M−1 s−1 for Hg2+ and IC50 = 1.4 μM and kinact = 2 × 102 M−1 s−1 for CH3Hg+). Exposure of lung epithelial cells led to the inhibition of cellular NAT1 (IC50 = 3 and 20 μM for Hg2+ and CH3Hg+, respectively). Our data suggest that exposure to mercury may affect the biotransformation of aromatic amines by NAT1. 相似文献
12.
Chrysina ED Kosmopoulou MN Tiraidis C Kardakaris R Bischler N Leonidas DD Hadady Z Somsak L Docsa T Gergely P Oikonomakos NG 《Protein science : a publication of the Protein Society》2005,14(4):873-888
In an attempt to identify leads that would enable the design of inhibitors with enhanced affinity for glycogen phosphorylase (GP), that might control hyperglycaemia in type 2 diabetes, three new analogs of beta-D-glucopyranose, 2-(beta-D-glucopyranosyl)-5-methyl-1, 3, 4-oxadiazole, -benzothiazole, and -benzimidazole were assessed for their potency to inhibit GPb activity. The compounds showed competitive inhibition (with respect to substrate Glc-1-P) with K(i) values of 145.2 (+/-11.6), 76 (+/-4.8), and 8.6 (+/-0.7) muM, respectively. In order to establish the mechanism of this inhibition, crystallographic studies were carried out and the structures of GPb in complex with the three analogs were determined at high resolution (GPb-methyl-oxadiazole complex, 1.92 A; GPb-benzothiazole, 2.10 A; GPb-benzimidazole, 1.93 A). The complex structures revealed that the inhibitors can be accommodated in the catalytic site of T-state GPb with very little change of the tertiary structure, and provide a rationalization for understanding variations in potency of the inhibitors. In addition, benzimidazole bound at the new allosteric inhibitor or indole binding site, located at the subunit interface, in the region of the central cavity, and also at a novel binding site, located at the protein surface, far removed (approximately 32 A) from the other binding sites, that is mostly dominated by the nonpolar groups of Phe202, Tyr203, Val221, and Phe252. 相似文献
13.
Sándor Kun Gerg? Z. Nagy Marietta Tóth Laura Czecze Albert Nguyen Van Nhien Tibor Docsa Pál Gergely Maria-Despoina Charavgi Paraskevi V. Skourti Evangelia D. Chrysina Tamás Patonay László Somsák 《Carbohydrate research》2011,346(12):1427
5-(O-Perbenzoylated-β-d-glucopyranosyl)tetrazole was obtained from O-perbenzoylated-β-d-glucopyranosyl cyanide by Bu3SnN3 or Me3SiN3–Bu2SnO. This tetrazole was transformed into 5-ethynyl- as well as 5-chloromethyl-2-(O-perbenzoylated-β-d-glucopyranosyl)-1,3,4-oxadiazoles by acylation with propiolic acid–DCC or chloroacetyl chloride, respectively. The chloromethyl oxadiazole gave the corresponding azidomethyl derivative on treatment with NaN3. These compounds were reacted with several alkynes and azides under Cu(I) catalysed cycloaddition conditions to give, after removal of the protecting groups by the Zemplén protocol, β-d-glucopyranosyl-1,3,4-oxadiazolyl-1,2,3-triazole, β-d-glucopyranosyl-1,2,3-triazolyl-1,3,4-oxadiazole, and β-d-glucopyranosyl-1,3,4-oxadiazolylmethyl-1,2,3-triazole type compounds. 5-Phenyltetrazole was also transformed under the above conditions into a series of aryl-1,3,4-oxadiazolyl-1,2,3-triazoles, aryl-1,2,3-triazolyl-1,3,4-oxadiazoles, and aryl-1,3,4-oxadiazolylmethyl-1,2,3-triazoles. The new compounds were assayed against rabbit muscle glycogen phosphorylase b and the best inhibitors had inhibition constants in the upper micromolar range (2-phenyl-5-[1-(β-d-glucopyranosyl)-1,2,3-triazol-4-yl]-1,3,4-oxadiazole 36: Ki = 854 μM, 2-(β-d-glucopyranosyl)-5-[1-(naphthalen-2-yl)-1,2,3-triazol-4-yl]-1,3,4-oxadiazole 47: Ki = 745 μM). 相似文献
14.
G. Burkhardt G. Wegener 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1994,164(4):261-271
Glycogen phosphorylase (EC 2.4.1.1) of Manduca sexta flight muscle was separated into three distinct peaks of activity on diethylaminoethyl-Sephacel. The three fractions of phosphorylase activity were further purified by affinity chromatography on AMP-Sepharose and shown to have the same relative molecular mass (=178000) on polyacrylamide gradient gel electrophoresis under non-denaturating conditions and to produce subunits of molecular mass =92000 on SDS gelelectrophoresis. On the basis of their kinetic properties with respect to the activator AMP and the inhibitor caffeine, the three fractions of phosphorylase activity were assigned as follows: peak 1=phosphorylase b (unphosphorylated form), peak 3=phosphorylase a (phosphorylated form); peak 2 represented a phospho-dephospho hybrid in which only one subunit of the dimeric enzyme was phosphorylated. This hypothesis was corroborated as the various forms could be interconverted in vitro by either dephosphorylation by an endogenous protein phosphatase producing the b form, or by phosphorylation catalyzed by purified phosphorylase kinase from rabbit muscle producing phosphorylase ab and a. From muscle of resting moths more phosphorylase was isolated in the b form (41%) than in the forms ab (28%) and a (31%), respectively. This proportion was changed in favour of the fully phosphorylated a form after a brief interval of flight when 68% of the phosphorylase activity was represented by the a form and only 13% by the b form. Unlike the phosphorylated forms a and ab of phosphorylase, the b form had low affinities for the substrates and for the activator AMP, and was virtually inactive if near-physiological concentrations of substrates and effectors were employed in the assays. The results demonstrate that in Manduca flight muscle three forms of phosphorylase coexist and that their interconversion is a mechanism for regulating phosphorylase activity in vivo.Abbreviations DEAE
diethylaminoethyl
- EDTA
ethylenediamine tetraacetate
- EGTA
ethyleneglycol-bis(-aminoethylether)N,N-tetra-acetic acid
-
M
r
relative molecular mass
- NMR
nuclear magnetic resonance
- PAGGE
polyacrylamide gradient gel electrophoresis
- Pi
morganic phosphate
- SDS
sodium dodecylsulphate
- TRIS
tris(hydroxymethyl)-aminomethane
-
V
max
maximum activity 相似文献
15.
This work describes carotenoid pigment production by the red bacterium Brevibacterium linens covering strain diversity, kinetic and analytical aspects. Pigment production of 23 B. linens strains ranged from 0.05 to 0.60 mg pigments L−1 culture, with specific productivity from 0.2 to 0.6 mg pigments per g dry biomass. The pigment production time curve showed
a sigmoid shape, that matched cell growth. HPLC analysis revealed three groups of peaks, possibly non-hydroxylated, mono-
and di-hydroxylated carotenoids. Polar molecules were mainly represented. Journal of Industrial Microbiology & Biotechnology (2000) 24, 64–70.
Received 19 April 1999/ Accepted in revised form 25 September 1999 相似文献
16.
A detailed kinetic study was carried out to investigate the porcine pancreatic lipase-catalysed esterification reactions of p-cresol–acetic acid and lactic acid–stearic acid. The kinetic data were in agreement with a Ping Pong Bi–Bi mechanism being followed by the enzyme, where inhibition is indicated in the presence of p-cresol and lactic acid in the respective reactions. Mathematical analyses of experimentally observed initial rates yielded various kinetic parameters, K
m(p-cresol) = 0.1, K
m(acetic acid) = 0.54, K
m(lactic acid) = 0.059 M, K
m(stearic acid) = 0.04 M, V
max(p-cresol–acetic acid) = 13.2(h–1), V
max(lactic acid–stearic acid) = 0.00163 M/h, K
i(p-cresol) = 0.59 and K
i(lactic acid) = 0.079 M. The K
m and K
i values of p-cresol and lactic acid observed in the respective reactions showed both the competitive nature of binding between the substrates p-cresol and acetic acid on the one hand and lactic acid and stearic acid on the other and the inhibitory nature of p-cresol and lactic acid. 相似文献
17.
18.
Michel B. Vivaudou Christophe Arnoult Michel Villaz 《The Journal of membrane biology》1991,122(2):165-175
Summary A new, nonenzymatically treated preparation of amphibian sarcolemmal blebs has been used to study the regulation of skeletal muscle ATP-sensitive K+ [K(ATP)] channels.When a frog skeletal muscle fiber is split in half in a Ca2+-free relaxing solution, large hemispherical membrane blebs appear spontaneously within minutes without need for Ca2+-induced contraction or enzymatic treatment. These blebs readily formed gigaseals with patch pipettes, and excised inside-out patches were found to contain a variety of K+ channels. Most prominent were K(ATP) channels similar to those found in the surface membrane of other muscle and nonmuscle cells. These channels were highly selective for K+, had a conductance of 53 pS in 140mmK+, and were blocked by internal ATP. The presence of these channels in most patches implies that split-fiber blebs are made up, at least in large part, of sarcolemmal membrane.In this preparation, K(ATP) channels could be rapidly and reversibly blocked by glibenclamide (0.1–10 m) in a dose-dependent manner. These channels were sensitive to ATP in the micromolar range in the absence of Mg. This sensitivity was noticeably reduced in the presence of millimolar Mg, most likely because of the ability of Mg2+ ions to bind ATP. Our data therefore suggest that free ATP is a much more potent inhibitor of these channels than MgATP. Channel sensitivity to ATP was significantly reduced by ADP in a manner consistent with a competition between ADP, a weak inhibitor, and ATP, a strong inhibitor, for the same inhibitory binding sites.These observations suggest that the mechanisms of nucleotide regulation of skeletal muscle and pancreatic K(ATP) channels are more analogous than previously thought. 相似文献
19.
Reaction of radicals in the presence of O2, or singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. They can be detected in cells and are poorly removed by enzymatic defenses. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, with this resulting in inactivation of some thiol-dependent enzymes. In light of these data, we hypothesized that inactivation of protein tyrosine phosphatases (PTPs), by hydroperoxides present on oxidized proteins, may contribute to cellular and tissue dysfunction by modulation of phosphorylation-dependent cell signaling. We show here that PTPs in cell lysates, and purified PTP-1B, are inactivated by amino acid, peptide, and protein hydroperoxides in a concentration- and structure-dependent manner. Protein hydroperoxides are particularly effective, with inhibition occurring with greater efficacy than with H2O2. Inactivation involves reaction of the hydroperoxide with the conserved active-site Cys residue of the PTPs, as evidenced by hydroperoxide consumption measurements and a diminution of this effect on blocking the Cys residue. This inhibition of PTPs, by oxidized proteins containing hydroperoxide groups, may contribute to cellular dysfunction and altered redox signaling in systems subject to oxidative stress. 相似文献