首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chordin-like 1 (CHRDL1) is a secreted bone morphogenetic protein (BMP) antagonist expressed in mesenchymal tissues whose function in development of the skeleton has not been examined in detail. Here we show Chrdl1 is dynamically expressed in the early distal limb bud mesenchyme, with expression becoming downregulated as development proceeds. Chrdl1 expression is largely excluded from the critical signaling center of the posterior limb bud, the Zone of Polarizing Activity (ZPA), as has been described for the BMP antagonist Gremlin (GREM1) ( Scherz et al., 2004, Science, 305, 396–399). Unlike Grem1, Chrdl1 is expressed in the hindlimb by a small subset of ZPA cells and their descendants suggesting divergent regulation and function between the various BMP antagonists. Ectopic expression of Chrdl1 throughout the avian limb bud using viral misexpression resulted in an oligodactyly phenotype with loss of digits from the anterior limb, although the development of more proximal elements of the zeugopod and stylopod were unaffected. Overgrowths of soft tissue and syndactyly were also observed, resulting from impaired apoptosis and failure of the anterior mesenchyme to undergo SOX9-dependent chondrogenesis, instead persisting as an interdigital-like soft tissue phenotype. Sonic hedgehog (SHH) and fibroblast growth factor (FGF) signaling were upregulated and persisted later in development, however these changes were only detected late in limb development at timepoints when endogenous Grem1 would normally be downregulated and increasing BMP signaling would cause termination of Shh and Fgf expression. Our results suggest that the early stages of the GREM1–SHH–FGF signaling network are resistant to Chrdl1-overexpression, leading to normal formation of proximal limb structures, but that later Bmp expression, impaired by ectopic CHRDL1, is essential for formation of the correct complement of digits.  相似文献   

3.
4.
5.
6.
7.
8.
Independent mouse knockouts of Etv2 and Flk1 are embryonic lethal and lack hematopoietic and endothelial lineages. We previously reported that Flk1 activates Etv2 in the initiation of hematopoiesis and vasculogenesis. However, Flk1 and its ligand VEGF are expressed throughout development, from E7.0 to adulthood, whereas Etv2 is expressed only transiently during embryogenesis. These observations suggest a complex regulatory interaction between Flk1 and Etv2. To further examine the Flk1 and Etv2 regulatory interaction, we transduced Etv2 and Flk1 mutant ES cells with viral integrants that inducibly overexpress Flk1 or Etv2. We demonstrated that forced expression of Etv2 rescued the hematopoietic and endothelial potential of differentiating Flk1 and Etv2 mutant cells. We further discovered that forced expression of Flk1 can rescue that of the Flk1, but not Etv2 mutant cells. Therefore, we conclude that the requirement for Flk1 can be bypassed by expressing Etv2, supporting the notion that disruption of Etv2 expression is responsible for the early phenotypes of the Etv2 and Flk1 mutant embryos. genesis 51:471–480.© 2013 Wiley Periodicals, Inc.  相似文献   

9.
Vertebrate limb outgrowth is driven by a positive feedback loop that involves Sonic hedgehog (Shh) and Gremlin1 (Grem1) in the posterior limb bud mesenchyme and Fibroblast growth factors (Fgfs) in the overlying epithelium. Proper spatio-temporal control of these signaling activities is required to avoid limb malformations such as polydactyly. Here we show that, in Tbx2-deficient hindlimbs, Shh/Fgf4 signaling is prolonged, resulting in increased limb bud size and duplication of digit 4. In turn, limb-specific Tbx2 overexpression leads to premature termination of this signaling loop with smaller limbs and reduced digit number as phenotypic manifestation. We show that Tbx2 directly represses Grem1 in distal regions of the posterior limb mesenchyme allowing Bone morphogenetic protein (Bmp) signaling to abrogate Fgf4/9/17 expression in the overlying epithelium. Since Tbx2 itself is a target of Bmp signaling, our data identify a growth-inhibiting positive feedback loop (Bmp/Tbx2/Grem1). We propose that proliferative expansion of Tbx2-expressing cells mediates self-termination of limb bud outgrowth due to their refractoriness to Grem1 induction.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
In the development of organs, multiple morphogen sources are often involved, and interact with each other. For example, the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) are major morphogen sources in the limb bud formation of vertebrates. Fgf expression in the AER and Shh expression in the ZPA are maintained by their positive feedback regulation mediated by diffusible molecules, FGF and SHH. A recent experimental observation suggests that the FGF-signal regulates the Shh expression in a feed-forward manner with activation and repression regulatory pathways. We study the coupled dynamics of Shh expression in the ZPA and Fgf expression in the AER, and the relationship of the relative position between AER and ZPA. We first show that with the feed-forward regulation only, the peak of ZPA activity can be formed distant from the AER as observed experimentally. Then, we clarify that the robustness of the ZPA spatial pattern to changes in system parameters is enhanced by adding the feedback regulation between the AER and the ZPA. Furthermore, sensitivity analysis shows that there exists the optimal feedback strength where the robustness is the most improved.  相似文献   

18.
19.
20.
The product of the Msx1 gene is a potent inhibitor of muscle differentiation. Msx1 is expressed in muscle precursor cells of the limb bud that also express Pax3. It is thought that Msx1 may facilitate distal migration by delaying myogenesis in these cells. Despite the role played by Msx1 in inhibiting muscle differentiation, nothing is known of the mechanisms that support the expression of the Msx1 gene within limb bud muscle precursor cells. In the present study we have used a combination of comparative genomics, mouse transgenic analysis, in situ hybridisation and immunohistochemistry to identify a highly conserved and tissue-specific regulatory sub-domain within the previously characterised Msx1 gene proximal enhancer element that supports the expression of the Msx1 gene in Pax3-expressing mouse limb pre-muscle masses. Furthermore, using a combination of in situ hybridisation, in vivo ChIP assay and transgenic explant culture analysis we provide evidence that Msx1 expression in limb bud muscle precursor cells is dependent on the canonical Wnt/TCF signalling pathway that is important in muscle shape formation. The results of these studies provide evidence of a mechanistic link between the Wnt/TCF and the Msx1/Pax3/MyoD pathways within limb bud muscle precursor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号