首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Caenorhabditis elegans, the decision to develop as a hermaphrodite or male is controlled by a cascade of regulatory genes. These genes and other tissue-specific regulatory genes also control sexual fate in the hermaphrodite germline, which makes sperm first and then oocytes. In this review, we summarize the genetic and molecular characterization of these genes and speculate how they mutually interact to specify sexual fate.  相似文献   

2.
3.
Ejaculated mammalian sperm must acquire fertilization capacity after residing into the female reproductive tract, a process collectively known as capacitation. Cholesterol efflux was required for sperm maturation. Different from flagellated sperm, C. elegans sperm are crawling cells. C. elegans sperm are highly enriched with cholesterol though this animal species lacks biosynthetic pathway for cholesterol and its survival requires an exogenous cholesterol supply. The low abundance of cholesterol in C. elegans lipid extract is thought insufficient to form lipid microdomains ubiquitously in this organism. We present evidence that cholesterol is enriched in the plasma membrane of C. elegans spermatids and that cholesterol- and glycosphingolipids (GSLs)-enriched membrane microdomains (lipid microdomains) mediate sperm activation. Disruption of sperm lipid microdomains by acute manipulation of cholesterol in vitro blocks the sperm activation. Restriction of cholesterol uptake also results in the abnormal sperm activation in both males and hermaphrodites. Manipulation of the integrity of lipid microdomains by targeting the biosynthesis of GSLs inhibits sperm activation and the inhibition can be rescued by the addition of exogenous GSLs. The cleavage of glycosylphosphatidylinositol (GPI)-anchored proteins, which are exclusively found in lipid microdomains, also affects sperm activation. We conclude that localized signaling mediated by lipid microdomains is critical for worm sperm activation. Lipid microdomains composed of cholesterol and GSLs have been observed in flagellated sperm of several animal species, thus cholesterol, before its efflux from the plasma membrane, might be needed to assemble into a platform for some more important upstream signal sorting during spermatogenesis than was previously thought.  相似文献   

4.
Nematode spermatozoa are highly specialized cells that lack flagella and, instead, extend a pseudopod to initiate motility. Crawling spermatozoa display classic features of amoeboid motility (e.g. protrusion of a pseudopod that attaches to the substrate and the assembly and disassembly of cytoskeletal filaments involved in cell traction and locomotion), however, cytoskeletal dynamics in these cells are powered exclusively by Major Sperm Protein (MSP) rather than actin and no other molecular motors have been identified. Thus, MSP-based motility is regarded as a simple locomotion machinery suitable for the study of plasma membrane protrusion and cell motility in general. This recent focus on MSP dynamics has increased the necessity of a standardized methodology to obtain C. elegans sperm extract that can be used in biochemical assays and proteomic analysis for comparative studies. In the present work we have modified a method to reproducibly obtain relative high amounts of proteins from C. elegans sperm extract. We show that these extracts share some of the properties observed in sperm extracts from the parasitic nematode Ascaris including Major Sperm Protein (MSP) precipitation and MSP fiber elongation. Using this method coupled to immunoblot detection, Mass Spectrometry identification, in silico prediction of functional domains and biochemical assays, our results indicate the presence of phosphorylation sites in MSP of Caenorhabditis elegans spermatozoa.  相似文献   

5.
Sodium-dependent neurotransmitter transporters participate in the clearance and/or recycling of neurotransmitters from synaptic clefts. The snf-11 gene in Caenorhabditis elegans encodes a protein of high similarity to mammalian GABA transporters (GATs). We show here that snf-11 encodes a functional GABA transporter; SNF-11-mediated GABA transport is Na+ and Cl- dependent, has an EC50 value of 168 microM, and is blocked by the GAT1 inhibitor SKF89976A. The SNF-11 protein is expressed in seven GABAergic neurons, several additional neurons in the head and retrovesicular ganglion, and three groups of muscle cells. Therefore, all GABAergic synapses are associated with either presynaptic or postsynaptic (or both) expression of SNF-11. Although a snf-11 null mutation has no obvious effects on GABAergic behaviors, it leads to resistance to inhibitors of acetylcholinesterase. In vivo, a snf-11 null mutation blocks GABA uptake in at least a subset of GABAergic cells; in a cell culture system, all GABA uptake is abolished by the snf-11 mutation. We conclude that GABA transport activity is not essential for normal GABAergic function in C. elegans and that the localization of SNF-11 is consistent with a GABA clearance function rather than recycling.  相似文献   

6.
Smith JR  Stanfield GM 《PLoS genetics》2011,7(11):e1002375
Seminal fluid proteins have been shown to play important roles in male reproductive success, but the mechanisms for this regulation remain largely unknown. In Caenorhabditis elegans, sperm differentiate from immature spermatids into mature, motile spermatozoa during a process termed sperm activation. For C. elegans males, sperm activation occurs during insemination of the hermaphrodite and is thought to be mediated by seminal fluid, but the molecular nature of this activity has not been previously identified. Here we show that TRY-5 is a seminal fluid protease that is required in C. elegans for male-mediated sperm activation. We observed that TRY-5::GFP is expressed in the male somatic gonad and is transferred along with sperm to hermaphrodites during mating. In the absence of TRY-5, male seminal fluid loses its potency to transactivate hermaphrodite sperm. However, TRY-5 is not required for either hermaphrodite or male fertility, suggesting that hermaphrodite sperm are normally activated by a distinct hermaphrodite-specific activator to which male sperm are also competent to respond. Within males, TRY-5::GFP localization within the seminal vesicle is antagonized by the protease inhibitor SWM-1. Together, these data suggest that TRY-5 functions as an extracellular activator of C. elegans sperm. The presence of TRY-5 within the seminal fluid couples the timing of sperm activation to that of transfer of sperm into the hermaphrodite uterus, where motility must be rapidly acquired. Our results provide insight into how C. elegans has adopted sex-specific regulation of sperm motility to accommodate its male-hermaphrodite mode of reproduction.  相似文献   

7.
In nematode, sperm activation (or spermiogenesis), a process in which the symmetric and non-motile spermatids transform into polarized and crawling spermatozoa, is critical for sperm cells to acquire fertilizing competence. SPE-8 dependent and SPE-8 independent pathways function redundantly during sperm activation in both males and hermaphrodites of Caenorhabditis elegans. However, the downstream signaling for both pathways remains unclear. Here we show that calcium signaling and the MAPK cascade are required for both SPE-8 dependent and SPE-8 independent sperm activation, implying that both pathways share common downstream signaling components during sperm activation. We demonstrate that activation of the MAPK cascade is sufficient to activate spermatids derived from either wild-type or spe-8 group mutant males and that activation of the MAPK cascade bypasses the requirement of calcium signal to induce sperm activation, indicating that the MAPK cascade functions downstream of or parallel with the calcium signaling during sperm activation. Interestingly, the persistent activation of MAPK in activated spermatozoa inhibits Major Sperm Protein (MSP)-based cytoskeleton dynamics. We demonstrate that MAPK plays dual roles in promoting pseudopod extension during sperm activation but also blocking the MSP-based, amoeboid motility of the spermatozoa. Thus, though nematode sperm are crawling cells, morphologically distinct from flagellated sperm, and the molecular machinery for motility of amoeboid and flagellated sperm is different, both types of sperm might utilize conserved signaling pathways to modulate sperm maturation.  相似文献   

8.
The gene nhr-6 encodes the Caenorhabditis elegans ortholog of the NR4A nuclear receptor. We determined the biological functions of NHR-6 through the isolation and characterization of a deletion allele of nhr-6, lg6001. We demonstrate that nhr-6 has an essential role in the development of the C. elegans somatic gonad. Specifically, nhr-6 is required for the development of the hermaphrodite spermatheca, a somatic gonad organ that serves as the site of sperm storage and oocyte fertilization. Using a variety of spermatheca cell markers, we have determined that loss of nhr-6 function causes severe morphological defects in the spermatheca and associated spermathecal valves. This appears to be due to specific requirements for nhr-6 in regulating cell proliferation and cell differentiation during development of these structures. The improper development of these structures in nhr-6(lg6001) mutants leads to defects in ovulation and significantly reduced fecundity of C. elegans hermaphrodites. The phenotypes of nhr-6(lg6001) mutants are consistent with a role for nhr-6 in organogenesis, similar to the functions of its mammalian homologs.  相似文献   

9.
The hermaphrodite Caenorhabditis elegans germline has become a classic model for stem cell regulation, but the male C. elegans germline has been largely neglected. This work provides a cellular analysis of the adult C. elegans male germline, focusing on its predicted stem cell region in the distal gonad. The goals of this study were two-fold: to establish the C. elegans male germline as a stem cell model and to identify sex-specific traits of potential relevance to the sperm/oocyte decision. Our results support two major conclusions. First, adult males do indeed possess a population of germline stem cells (GSCs) with properties similar to those of hermaphrodite GSCs (lack of cell cycle quiescence and lack of reproducibly oriented divisions). Second, germ cells in the mitotic region, including those most distal within the niche, exhibit sex-specific behaviors (e.g. cell cycle length) and therefore have acquired sexual identity. Previous studies demonstrated that some germ cells are not committed to a sperm or oocyte cell fate, even in adults. We propose that germ cells can acquire sexual identity without being committed to a sperm or oocyte cell fate.  相似文献   

10.
Lim JG  Stine RR  Yanowitz JL 《Genetics》2008,180(2):715-726
It is generally considered that meiotic recombination rates increase with temperature, decrease with age, and differ between the sexes. We have reexamined the effects of these factors on meiotic recombination in the nematode Caenorhabditis elegans using physical markers that encompass >96% of chromosome III. The only difference in overall crossover frequency between oocytes and male sperm was observed at 16°. In addition, crossover interference (CI) differs between the germ lines, with oocytes displaying higher CI than male sperm. Unexpectedly, our analyses reveal significant changes in crossover distribution in the hermaphrodite oocyte in response to temperature. This feature appears to be a general feature of C. elegans chromosomes as similar changes in response to temperature are seen for the X chromosome. We also find that the distribution of crossovers changes with age in both hermaphrodites and females. Our observations indicate that it is the oocytes from the youngest mothers—and not the oldest—that showed a different pattern of crossovers. Our data enhance the emerging hypothesis that recombination in C. elegans, as in humans, is regulated in large chromosomal domains.  相似文献   

11.
BACKGROUND: Sexual reproduction in animals requires the production of highly specialized motile sperm cells that can navigate to and fertilize ova. During sperm differentiation, nonmotile spermatids are remodeled into motile spermatozoa through a process known as spermiogenesis. In nematodes, spermiogenesis, or sperm activation, involves a rapid cellular morphogenesis that converts unpolarized round spermatids into polarized amoeboid spermatozoa capable of both motility and fertilization. RESULTS: Here we demonstrate, by genetic analysis and in vivo and in vitro cell-based assays, that the temporal and spatial localization of spermiogenesis are critical determinants of male fertility in C. elegans, a male/hermaphrodite species. We identify swm-1 as a factor important for male but not hermaphrodite fertility. We show that whereas in wild-type males, activation occurs after spermatids are transferred to the hermaphrodite, swm-1 mutants exhibit ectopic activation of sperm within the male reproductive tract. This ectopic activation leads to infertility by impeding sperm transfer. The SWM-1 protein is composed of a signal sequence and two trypsin inhibitor-like domains and likely functions as a secreted serine protease inhibitor that targets two distinct proteases. CONCLUSIONS: These findings support a model in which (1) proteolysis acts as an important in vivo trigger for sperm activation and (2) regulating the timing of proteolysis-triggered activation is crucial for male reproductive success. Furthermore, our data provide insight into how a common program of gamete differentiation can be modulated to allow males to participate in reproduction in the context of a male/hermaphrodite species where the capacity for hermaphrodite self-fertilization has rendered them nonessential for progeny production.  相似文献   

12.
The small free-living nematode Caenorhabditis elegans is usually found as a hermaphrodite, but occasionally true males appear in the population. This study provides an account of gonadogenesis in the normal male and in a mutant that is a temperature-sensitive sex transformer.Male and hermaphrodite gonads develop from morphologically identical primordia. The small primordial gonad lies on the ventral side of the worm in the coelomic cavity. The gonadial primordium contains four nuclei at parturition. As this primordium develops in a hermaphrodite, it produces a double-armed, mirror symmetrical gonad that produces first sperm and then eggs. In the male, however, this primordium develops into an asymmetrical structure composed of a ventrally located testis, a loop region, a seminal vesicle, and a vas deferens. The male gonad presents a linear sequence of nuclei in successive stages of spermatogenesis beginning with a mitotic region in the testis, followed by clearly distinguishable stages of meiosis throughout the loop region to the seminal vesicle.A temperature-sensitive sex transformer mutant, tsB202, has been isolated. tsB202 carries an autosomal recessive mutation in linkage group II that at restrictive temperature transforms an XX hermaphrodite into a phenotypic male, complete with a normal male gonad and vestigial external genitalia. These transformed males are classified as pseudomales because they do not exhibit mating behavior. Temperature shift experiments have determined the specific temporal sequences of gonadogenesis, oogenesis, and spermatogenesis. Proper manipulation of the temperature regimen causes the production of intersexes. In one intersex, a male gonad complete with sperm, seminal vesicle, and vas deferens also contains oocytes. In another intersex produced by the complementary temperature shift, a hermaphrodite-shaped gonad develops that produces only sperm and no oocytes.  相似文献   

13.
The advantages of developing mutagenicity tests using the nematode, Caenorhabditis elegans, are discussed and an efficient in vivo test for detecting heritable autosomal recessive lethals over 40 map units is described. The test uses the reciprocal translocation, eTl(III;V), as a balancer. Dose-response curves for EMS (0.004–0.06 M) and γ-radiation (500–3000 R) were obtained. The spontaneous induction frequency for lethal mutations in 40 map units was found to be 0.06%. Mutations could be detected within 10 days and confirmed within another 5 days. From the point of view of C. elegans genetics, the EMS and γ-ray curves demonstrate that eTl can be used to test the efficacy of a particular mutagen in this organism. Although the present eTl protocol simultaneously screens hermaphrodite oocyte and sperm chromosomes, variations of the protocol that screen oocyte and sperm chromosomes separately are described.  相似文献   

14.
In Nile tilapia (Oreochromis niloticus), individuals with atypical sexual genotype are commonly used in farming (use of YY males to produce all-male offspring), but they also constitute major tools to study sex determinism mechanisms. In other species, sexual genotype and sex reversal procedures affect different aspects of biology, such as growth, behavior and reproductive success. The aim of this study was to assess the influence of sexual genotype on sperm quality in Nile tilapia. Milt characteristics were compared in XX (sex-reversed), XY and YY males in terms of gonadosomatic index, sperm count, sperm motility and duration of sperm motility. Sperm motility was measured by computer-assisted sperm analysis (CASA) quantifying several parameters: total motility, progressive motility, curvilinear velocity, straight line velocity, average path velocity and linearity. None of the sperm traits measured significantly differed between the three genotypes. Mean values of gonadosomatic index, sperm concentration and sperm motility duration of XX, XY and YY males, respectively ranged from 0.92 to 1.33%, from 1.69 to 2.22 ×109 cells mL−1 and from 18′04″ to 27′32″. Mean values of total motility and curvilinear velocity 1 min after sperm activation, respectively ranged from 53 to 58% and from 71 to 76 μm s−1 for the three genotypes. After 3 min of activity, all the sperm motility and velocity parameters dropped by half and continued to slowly decrease thereafter. Seven min after activation, only 9 to 13% of spermatozoa were still progressive. Our results prove that neither sexual genotype nor hormonal sex reversal treatments affect sperm quality in male Nile tilapias with atypical sexual genotype.  相似文献   

15.
The medaka, Oryzias latipes, is a well-recognized fish model for biomedical research. An understanding of gamete characteristics is necessary for experimental manipulations such as artificial fertilization and sperm cryopreservation. The goal of this study was to investigate sperm characteristics of motility initiation, duration, and retention in medaka. First, motility was initiated by osmolality values ranging from 25 to 686 mOsm/kg, which included deionized water and hypotonic, isotonic, and hypertonic Hanks’ balanced salt solution. The percentage of motile sperm was >80% when osmolality was <315 mOsm/kg and decreased as osmolality increased. This is different from most fish with external fertilization in which sperm motility can be initiated by hypotonic (for freshwater fish) or hypertonic (for marine fish) solutions or by altering the concentration of specific ions such as potassium (e.g., in salmonids). Second, upon activation, the sperm remained continuously motile, with reserve capacity, for as long as 1 wk during storage at 4 °C. This was also different from other externally fertilizing fish, in which motility is typically maintained for seconds to several minutes. Third, after changing the osmolality to 46 to 68 mOsm/kg by adding deionized water, the motility of sperm held at 274 to 500 mOsm/kg was higher than the original motility (P ≤ 0.035) after 24, 48, and 72 h of storage at 4 °C. Fourth, the addition of glucose had no effect on maintaining sperm motility during refrigerated storage. To our knowledge, this combination of sperm motility characteristics is reported for the first time in fish and may be unique to medaka or may represent an undescribed modality of sperm behavior within euryhaline fish.  相似文献   

16.
In the germ line of the Caenorhabditis elegans hermaphrodite, nuclei either proliferate through mitosis or initiate meiosis, finally differentiating as spermatids or oocytes. The production of oocytes requires repression of the fem-3 mRNA by cytoplasmic FBF and nuclear MOG proteins. Here we report the identification of the sex determining gene mog-3 and show that in addition to its role in gamete sex determination, it is necessary for meiosis by acting downstream of GLP-1/Notch. Furthermore, we found that MOG-3 binds both to the nuclear proteins MEP-1 and CIR-1. MEP-1 is necessary for oocyte production and somatic differentiation, while the mammalian CIR-1 homolog counters Notch signaling. We propose that MOG-3, MEP-1 and CIR-1 associate in a nuclear complex which regulates different aspects of germ cell development. While FBF triggers the sperm/oocyte switch by directly repressing the fem-3 mRNA in the cytoplasm, the MOG proteins play a more indirect role in the nucleus, perhaps by acting as epigenetic regulators or by controlling precise splicing events.  相似文献   

17.
Fertilization competence is acquired in the female tract in a process known as capacitation. Capacitation is needed for the activation of motility (e.g. hyperactivation) and to prepare the sperm for an exocytotic process known as acrosome reaction. Although the HCO3-dependent soluble adenylyl cyclase Adcy10 plays a role in motility, less is known about the source of cAMP in the sperm head. Transmembrane adenylyl cyclases (tmACs) are another possible source of cAMP. These enzymes are regulated by stimulatory heterotrimeric Gs proteins; however, the presence of Gs or tmACs in mammalian sperm has been controversial. In this study, we used Western blotting and cholera toxin-dependent ADP-ribosylation to show the Gs presence in the sperm head. Also, we showed that forskolin, a tmAC-specific activator, induces cAMP accumulation in sperm from both WT and Adcy10-null mice. This increase is blocked by the tmAC inhibitor SQ22536 but not by the Adcy10 inhibitor KH7. Although Gs immunoreactivity and tmAC activity are detected in the sperm head, PKA is only found in the tail, where Adcy10 was previously shown to reside. Consistent with an acrosomal localization, Gs reactivity is lost in acrosome-reacted sperm, and forskolin is able to increase intracellular Ca2+ and induce the acrosome reaction. Altogether, these data suggest that cAMP pathways are compartmentalized in sperm, with Gs and tmAC in the head and Adcy10 and PKA in the flagellum.  相似文献   

18.
Northern pike (Esox lucius L.) spermatozoa are uniflagellated cells differentiated into a head without acrosome, a midpiece and a flagellar tail region flanked by a fin structure. Total, flagellar, head and midpiece lengths of spermatozoa were measured and show mean values of 34.5, 32.0, 1.32, 1.17 μm, respectively, with anterior and posterior widths of the midpiece measuring 0.8 and 0.6 μm, respectively. The osmolality of seminal plasma ranged from 228 to 350 mOsmol kg−1 (average: 283.88 ± 33.05). After triggering of sperm motility in very low osmolality medium (distilled water), blebs appeared along the flagellum. At later periods in the motility phase, the tip of the flagellum became curled into a loop shape which resulted in a shortening of the flagellum and a restriction of wave development to the proximal part (close to head). Spermatozoa velocity and percentage of motile spermatozoa decreased rapidly as a function of time postactivation and depended on the osmolality of activation media (P < 0.05). In general, the greatest percentage of motile spermatozoa and highest spermatozoa velocity were observed between 125 and 235 mOsmol kg−1. Osmolality above 375 mOsmol kg−1 inhibited the motility of spermatozoa. After triggering of sperm motility in activation media, beating waves propagated along the full length of flagella, while waves appeared dampened during later periods in the motility phase, and were absent at the end of the motility phase. By increasing osmolality, the velocity of spermatozoa reached the highest value while wave length, amplitude, number of waves and curvatures also were at their highest values. This study showed that sperm morphology can be used for fish classification. Sperm morphology, in particular, the flagellar part showed several changes during activation in distilled water. Sperm motility of pike is inhibited due to high osmolality in the seminal plasma. Osmolality of activation medium affects the percentage of motile sperm and spermatozoa velocity due to changes in flagellar wave parameters.  相似文献   

19.
Motility and cryopreservation of testicular sperm of European common frog, Rana temporaria were investigated. Collected testicular spermatozoa were immotile in solutions of high osmolalities: 300 mmol/l sucrose and motility inhibiting saline solution-MIS. Full sperm motility could be activated in distilled water or in a solution of 50 mmol/l NaCl, = 90 mosmol/kg, with 75-90% motility and 14-16 μm s−1 swimming velocity. Spermatozoa activated in distilled water and kept at room temperature ceased the motility within a period of 1 h. But when they were kept at 4 °C, no significant decrease in sperm motility and velocity occurred over a period of 1 h. Incubation of testicular sperm diluted 1:2 with MIS containing 10% DMSO, 5% glycerol, 10% methanol, or 10% propandiol for a period of 40 min at 4 °C showed that propandiol was the most toxic cryoprotectant for spermatozoa of European common frog R. temporaria. However, methanol was not toxic to spermatozoa during the 40 min incubation period, it failed to protect spermatozoa during the freezing and thawing process. DMSO and glycerol were useful penetrating cryoprotectants that interacted with sperm diluents in cryodiluent efficacy. In combination with the sucrose diluent, DMSO was a better cryoprotectant than glycerol, while in combination with MIS, DMSO and glycerol were similarly useful. Sperm was frozen at two freezing levels above the surface of liquid nitrogen. Sperm frozen 5 cm above the surface of liquid nitrogen resulted in immotile and non-viable spermatozoa. However, sperm frozen at 10 cm above the surface of liquid nitrogen showed 40-45% viability and 30-35% motility, compared to the untreated freshly collected testicular sperm. Addition of hen egg yolk had no positive effect on the post-thaw sperm motility, viability and hatching rate when added to sucrose cryodiluents. However, addition of 5% egg yolk to the MIS containing 5% glycerol and 2.5% sucrose significantly improved the hatching rate than all other treatments. Therefore, we conclude that, MIS and 300 mmol/l sucrose are suitable diluents for immotile storage of testicular semen. For cryopreservation, dilution to a final concentration of 5-6 × 106/ml in MIS with 5% glycerol, 2.5% sucrose and 5% egg yolk, frozen in liquid nitrogen vapour at 10 cm above its surface, and thawed at 22 °C for 40 s is a useful cryopreservation protocol for R. temporaria sperm. Further research is needed to determine the motility parameters and cryopreservation of spermatic urine of R. temporaria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号