首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If cells are treated with DNA damaging agents or inhibitors that interfere with ongoing DNA replication, the intra-S and S/M checkpoints delay progression through S phase and mitotic entry, respectively, to allow time for DNA repair and replication restart. In vertebrates, these checkpoint responses to replication blocks are largely mediated by the sensor kinase ATR and its major downstream effector kinase Chk1. Increasing evidence suggests that the ATR pathway is also vital in the absence of exogenous stresses, i.e. during “unperturbed” replication. Both ATR and Chk1 are essential proteins in vertebrates, and lack of components of the ATR/Chk1 pathway can result in impaired replication and spontaneous DNA damage. Here we give an overview of how the ATR/Chk1 pathway responds to exogenously blocked replication and then describe evidence for roles of this pathway during replication in an unperturbed S phase.  相似文献   

2.
The Fanconi anemia (FA) pathway is implicated in DNA repair and cancer predisposition. Central to this pathway is the FA core complex, which is targeted to chromatin by FANCM and FAAP24 following replication stress. Here we show that FANCM and FAAP24 interact with the checkpoint protein HCLK2 independently of the FA core complex. In addition to defects in FA pathway activation, downregulation of FANCM or FAAP24 also compromises ATR/Chk1-mediated checkpoint signaling, leading to defective Chk1, p53, and FANCE phosphorylation; 53BP1 focus formation; and Cdc25A degradation. As a result, FANCM and FAAP24 deficiency results in increased endogenous DNA damage and a failure to efficiently invoke cell-cycle checkpoint responses. Moreover, we find that the DNA translocase activity of FANCM, which is dispensable for FA pathway activation, is required for its role in ATR/Chk1 signaling. Our data suggest that DNA damage recognition and remodeling activities of FANCM and FAAP24 cooperate with ATR/Chk1 to promote efficient activation of DNA damage checkpoints.  相似文献   

3.
Hyperthermia is widely used to treat patients with cancer, especially in combination with other treatments such as radiation therapy. Heat treatment per se activates DNA damage responses mediated by the ATR-Chk1 and ATM-Chk2 pathways but it is not fully understood how these DNA damage responses are activated and affect heat tolerance. By performing a genetic analysis of human HeLa cells and chicken B lymphoma DT40 cells, we found that heat-induced Chk1 Ser345 phosphorylation by ATR was largely dependent on Rad9, Rad17, TopBP1 and Claspin. Activation of the ATR-Chk1 pathway by heat, however, was not associated with FancD2 monoubiquitination or RPA32 phosphorylation, which are known as downstream events of ATR kinase activation when replication forks are stalled. Downregulation of ATR, Rad9, Rad17, TopBP1 or Claspin drastically reduced clonogenic cell viability upon hyperthermia, while gene knockout or inhibition of ATM kinase reduced clonogenic viability only modestly. Suppression of the ATR-Chk1 pathway activation enhanced heat-induced phosphorylation of Chk2 Thr68 and simultaneous inhibition of ATR and ATM kinases rendered severe heat cytotoxicity. These data indicate that essential factors for activation of the ATR-Chk1 pathway at stalled replication forks are also required for heat-induced activation of ATR kinase, which predominantly contributes to heat tolerance in a non-overlapping manner with ATM kinase.  相似文献   

4.
The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets, NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells from replication stress is clearly distinguishable from that protecting cells from IR.  相似文献   

5.
The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets, NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells from replication stress is clearly distinguishable from that protecting cells from IR.  相似文献   

6.
The replisome is important for DNA replication checkpoint activation, but how specific components of the replisome coordinate with ATR to activate Chk1 in human cells remains largely unknown. Here, we demonstrate that And‐1, a replisome component, acts together with ATR to activate Chk1. And‐1 is phosphorylated at T826 by ATR following replication stress, and this phosphorylation is required for And‐1 to accumulate at the damage sites, where And‐1 promotes the interaction between Claspin and Chk1, thereby stimulating efficient Chk1 activation by ATR. Significantly, And‐1 binds directly to ssDNA and facilitates the association of Claspin with ssDNA. Furthermore, And‐1 associates with replication forks and is required for the recovery of stalled forks. These studies establish a novel ATR–And‐1 axis as an important regulator for efficient Chk1 activation and reveal a novel mechanism of how the replisome regulates the replication checkpoint and genomic stability.  相似文献   

7.
8.
Breaks at common fragile sites (CFS) are a recognized source of genome instability in pre-neoplastic lesions, but how such checkpoint-proficient cells escape surveillance and continue cycling is unknown. Here we show, in lymphocytes and fibroblasts, that moderate replication stresses like those inducing breaks at CFSs trigger chromatin loading of sensors and mediators of the ATR pathway but fail to activate Chk1 or p53. Consistently, we found that cells depleted of ATR, but not of Chk1, accumulate single-stranded DNA upon Mre11-dependent resection of collapsed forks. Partial activation of the pathway under moderate stress thus takes steps against fork disassembly but tolerates S-phase progression and mitotic onset. We show that fork protection by ATR is crucial to CFS integrity, specifically in the cell type where a given site displays paucity in backup replication origins. Tolerance to mitotic entry with under-replicated CFSs therefore results in chromosome breaks, providing a pool of cells committed to further instability.  相似文献   

9.
10.
The Tim (Timeless)–Tipin complex has been proposed to maintain genome stability by facilitating ATR-mediated Chk1 activation. However, as a replisome component, Tim–Tipin has also been suggested to couple DNA unwinding to synthesis, an activity expected to suppress single-stranded DNA (ssDNA) accumulation and limit ATR–Chk1 pathway engagement. We now demonstrate that Tim–Tipin depletion is sufficient to increase ssDNA accumulation at replication forks and stimulate ATR activity during otherwise unperturbed DNA replication. Notably, suppression of the ATR–Chk1 pathway in Tim–Tipin-deficient cells completely abrogates nucleotide incorporation in S phase, indicating that the ATR-dependent response to Tim–Tipin depletion is indispensible for continued DNA synthesis. Replication failure in ATR/Tim-deficient cells is strongly associated with synergistic increases in H2AX phosphorylation and DNA double-strand breaks, suggesting that ATR pathway activation preserves fork stability in instances of Tim–Tipin dysfunction. Together, these experiments indicate that the Tim–Tipin complex stabilizes replication forks both by preventing the accumulation of ssDNA upstream of ATR–Chk1 function and by facilitating phosphorylation of Chk1 by ATR.  相似文献   

11.
Chk1 phosphorylation by the PI3-like kinases ATR and ATM is critical for its activation and its role in prevention of premature mitotic entry in response to DNA damage or stalled replication. The breast and ovarian tumor suppressor, BRCA1, is among several checkpoint mediators that are required for Chk1 activation by ATM and ATR. Previously we showed that BRCA1 is necessary for Chk1 phosphorylation and activation following ionizing radiation. BRCA1 has been implicated in S-phase checkpoint control yet its mechanism of action is not well characterized. Here we report that BRCA1 is critical for Chk1 phosphorylation in response to inhibition of replication by either cisplatin or hydroxyurea. While Chk1 phosphorylation of S317 is fully dependent on BRCA1, additional proteins may mediate S345 phosphorylation at later time points. In addition, we show that a subset of phosphorylated Chk1 is released from the chromatin in a BRCA1-dependent manner which may lead to the phosphorylation of Chk1 substrate, Cdc25C, on S216 and to S-phase checkpoint activation. Inhibition of Chk1 kinase by UCN-01 or expression of Chk1 phosphorylation mutants in which the serine residues were substituted with alanine residues abrogates BRCA1-dependent cell cycle arrest in response replication inhibition. These data reveal that BRCA1 facilitates Chk1 phosphorylation and its partial chromatin dissociation following replication inhibition that is likely to be required for S-phase checkpoint signaling.  相似文献   

12.
Hyperthermia induced by heat stress (HS) inhibits the proliferation of cancer cells and induces their apoptosis. However, the mechanism underlying HS-induced apoptosis remains elusive. Here, we demonstrated a novel evidence that checkpoint kinase 1 (Chk1) plays crucial roles in the apoptosis and regulation of cell cycle progression in cells under HS. In human leukemia Jurkat cells, interestingly, the ataxia telangiectasia and Rad-3 related (ATR)-Chk1 pathway was preferentially activated rather than the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) pathway under HS. The selective inhibitors of ATR or Chk1 abrogated HS-induced apoptosis in human leukemia Jurkat cells whereas the inhibition of ATM or Chk2 caused only marginal effects. Inhibition of ATR and Chk1 also abrogated G2/M checkpoint activation by HS in Jurkat cells. The effects of small interfering RNA targeting Chk1 were similar to those of the selective inhibitor of Chk1. In addition, the efficiencies of Chk1 inhibition on G2/M checkpoint abrogation and apoptosis induction were confirmed in the adherent cancer cell lines HeLa, HSC3, and PC3, suggesting that the targeting of Chk1 can be effective in solid tumors cells. In conclusion, these findings indicate a novel molecular basis of G2/M checkpoint activation and apoptosis in cells exposed to HS.  相似文献   

13.
ATRMec1 phosphorylation-independent activation of Chk1 in vivo   总被引:1,自引:0,他引:1  
The conserved protein kinase Chk1 is a player in the defense against DNA damage and replication blocks. The current model is that after DNA damage or replication blocks, ATR(Mec1) phosphorylates Chk1 on the non-catalytic C-terminal domain. However, the mechanism of activation of Chk1 and the function of the Chk1 C terminus in vivo remains largely unknown. In this study we used an in vivo assay to examine the role of the C terminus of Chk1 in the response to DNA damage and replication blocks. The conserved ATR(Mec1) phosphorylation sites were essential for the checkpoint response to DNA damage and replication blocks in vivo; that is, that mutation of the sites caused lethality when DNA replication was stalled by hydroxyurea. Despite this, loss of the ATR(Mec1) phosphorylation sites did not change the kinase activity of Chk1 in vitro. Furthermore, a single amino acid substitution at an invariant leucine in a conserved domain of the non-catalytic C terminus restored viability to cells expressing the ATR(Mec1) phosphorylation site-mutated protein and relieved the requirement of an upstream mediator for Chk1 activation. Our findings show that a single amino acid substitution in the C terminus, which could lead to an allosteric change in Chk1, allows it to bypass the requirement of the conserved ATR(Mec1) phosphorylation sites for checkpoint function.  相似文献   

14.
Mammalian Timeless is a multifunctional protein that performs essential roles in the circadian clock, chromosome cohesion, DNA replication fork protection, and DNA replication/DNA damage checkpoint pathways. The human Timeless exists in a tight complex with a smaller protein called Tipin (Timeless-interacting protein). Here we investigated the mechanism by which the Timeless-Tipin complex functions as a mediator in the ATR-Chk1 DNA damage checkpoint pathway. We find that the Timeless-Tipin complex specifically mediates Chk1 phosphorylation by ATR in response to DNA damage and replication stress through interaction of Tipin with the 34-kDa subunit of replication protein A (RPA). The Tipin-RPA interaction stabilizes Timeless-Tipin and Tipin-Claspin complexes on RPA-coated ssDNA and in doing so promotes Claspin-mediated phosphorylation of Chk1 by ATR. Our results therefore indicate that RPA-covered ssDNA not only supports recruitment and activation of ATR but also, through Tipin and Claspin, it plays an important role in the action of ATR on its critical downstream target Chk1.  相似文献   

15.
16.
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint response independently of its role in DNA synthesis. Using Xenopus egg extracts to investigate the role of RPA recruitment at uncoupled forks in checkpoint activation we have surprisingly found that in conditions in which DNA synthesis occurs, RPA accumulation at forks stalled by either replication stress or UV irradiation is dispensable for Chk1 phosphorylation. In contrast, when both replication fork uncoupling and RPA hyperloading are suppressed, Chk1 phosphorylation is inhibited. Moreover, we show that extracts containing reduced levels of RPA accumulate ssDNA and induce spontaneous, caffeine-sensitive, Chk1 phosphorylation in S-phase. These results strongly suggest that disturbance of enzymatic activities of replication forks, rather than RPA hyperloading at stalled forks, is a critical determinant of ATR activation.  相似文献   

17.
Luo Y  Lou S  Deng X  Liu Z  Li Y  Kleiboeker S  Qiu J 《Journal of virology》2011,85(16):8046-8055
Human parvovirus B19 (B19V) infection is restricted to erythroid progenitor cells of the human bone marrow. Although the mechanism by which the B19V genome replicates in these cells has not been studied in great detail, accumulating evidence has implicated involvement of the cellular DNA damage machinery in this process. Here, we report that, in ex vivo-expanded human erythroid progenitor cells, B19V infection induces a broad range of DNA damage responses by triggering phosphorylation of all the upstream kinases of each of three repair pathways: ATM (ataxia-telangiectasi mutated), ATR (ATM and Rad3 related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit). We found that phosphorylated ATM, ATR, and DNA-PKcs, and also their downstream substrates and components (Chk2, Chk1, and Ku70/Ku80 complex, respectively), localized within the B19V replication center. Notably, inhibition of kinase phosphorylation (through treatment with either kinase-specific inhibitors or kinase-specific shRNAs) revealed requirements for signaling of ATR and DNA-PKcs, but not ATM, in virus replication. Inhibition of the ATR substrate Chk1 led to similar levels of decreased virus replication, indicating that signaling via the ATR-Chk1 pathway is critical to B19V replication. Notably, the cell cycle arrest characteristic of B19V infection was not rescued by interference with the activity of any of the three repair pathway kinases.  相似文献   

18.
DNA damage response (DDR) activates a complex signaling network that triggers DNA repair, cell cycle arrest, and/or cell death. Depending on the type and severity of DNA lesion, DDR is controlled by "master" regulators including ATM and ATR protein kinases. Cisplatin, a major chemotherapy drug that cross-links DNA, induces ATR-dependent DDR, resulting in apoptosis. However, it is unclear how ATR is activated. To identify the key regulators of ATR, we analyzed the proteins that associate with ATR after cisplatin treatment by blue native-PAGE and co-immunoprecipitation. The mismatch repair protein hMSH2 was found to be a major ATR-binding protein. Functionally, ATR activation and its recruitment to nuclear foci during cisplatin treatment were attenuated, and DNA damage signaling, involving Chk2, p53, and PUMA-α, was suppressed in hMSH2-deficient cells. ATR activation induced by the DNA methylating agent N-methyl-N-nitrosourea was also shown to be hMSH2-dependent. Intriguingly, hMSH2-mediated ATR recruitment and activation appeared independent of replication protein A, Rad17, and the Rad9-Hus1-Rad1 protein complex. Together the results support a hMSH2-dependent pathway of ATR activation and downstream Chk2/p53 signaling.  相似文献   

19.
Pyrrole–imidazole polyamides targeted to the androgen response element were cytotoxic in multiple cell lines, independent of intact androgen receptor signaling. Polyamide treatment induced accumulation of S-phase cells and of PCNA replication/repair foci. Activation of a cell cycle checkpoint response was evidenced by autophosphorylation of ATR, the S-phase checkpoint kinase, and by recruitment of ATR and the ATR activators RPA, 9-1-1, and Rad17 to chromatin. Surprisingly, ATR activation was accompanied by only a slight increase in single-stranded DNA, and the ATR targets RPA2 and Chk1, a cell cycle checkpoint kinase, were not phosphorylated. However, ATR activation resulted in phosphorylation of the replicative helicase subunit MCM2, an ATR effector. Polyamide treatment also induced accumulation of monoubiquitinated FANCD2, which is recruited to stalled replication forks and interacts transiently with phospho-MCM2. This suggests that polyamides induce replication stress that ATR can counteract independently of Chk1 and that the FA/BRCA pathway may also be involved in the response to polyamides. In biochemical assays, polyamides inhibit DNA helicases, providing a plausible mechanism for S-phase inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号