首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An epithelial–mesenchymal transformation (EMT) involves alterations in cell–cell and cell–matrix adhesion, the detachment of epithelial cells from their neighbors, the degradation of the basal lamina and acquisition of mesenchymal phenotype. Here we present Monte Carlo simulations for a specific EMT in early heart development: the formation of cardiac cushions. Cell rearrangements are described in accordance with Steinberg's differential adhesion hypothesis, which states that cells possess a type-dependent adhesion apparatus and are sufficiently motile to give rise to the tissue conformation with the largest number of strong bonds. We also implement epithelial and mesenchymal cell proliferation, cell type change and extracellular matrix production by mesenchymal cells. Our results show that an EMT is promoted more efficiently by an increase in cell–substrate adhesion than by a decrease in cell–cell adhesion. In addition to cushion tissue formation, the model also accounts for the phenomena of matrix invasion and mesenchymal condensation. We conclude that in order to maintain epithelial integrity during EMT the number of epithelial cells must increase at a controlled rate. Our model predictions are in qualitative agreement with available experimental data.  相似文献   

2.
Numb is an endocytic adaptor protein that regulates internalization and post-endocytic trafficking of cell surface proteins. In polarized epithelial cells Numb is localized to the basolateral membrane, and recent work has implicated Numb in regulation of cell adhesion and migration, suggesting a role for Numb in epithelial–mesenchymal transition (EMT). We depleted MDCK cells of Numb and examined the effects downstream of EMT-promoting stimuli. While knockdown of Numb did not affect apicobasal polarity, we show that depletion of Numb destabilizes E-cadherin-based cell–cell adhesion and promotes loss of epithelial cell morphology. In addition, Numb knockdown in MDCK cells potentiates HGF-induced lamellipodia formation and cell dispersal. Examination of Rac1-GTP levels in Numb knockdown cells revealed hyperactivation of Rac1 following extracellular calcium depletion and HGF stimulation, which corresponds with enhanced loss of cell adhesions and lamellipodia formation. Furthermore, inhibition of Rac1 in Numb depleted cells stabilized cell–cell contacts following depletion of extracellular calcium. Together, these data indicate that Numb acts to suppress Rac1-GTP accumulation, and its loss leads to increased sensitivity toward extracellular signals that disrupt cell–cell adhesion to induce epithelial–mesenchymal transition (EMT) and cell dispersal.  相似文献   

3.
HGF signaling induces epithelial cells to disassemble cadherin-based adhesion and increase cell motility and invasion, a process termed epithelial–mesenchymal transition (EMT). EMT plays a major role in cancer metastasis, allowing individual cells to detach from the primary tumor, invade local tissue, and colonize distant tissues with new tumors. While invasion of vascular and lymphatic networks is the predominant route of metastasis, nerves also can act as networks for dissemination of cancer cell to distant sites in a process termed perineual invasion (PNI). Signaling between nerves and invasive cancer cells remains poorly understood, as does cellular decision making that selects the specific route of invasion. Here we examine how HGF signaling contributes to PNI using reductionist culture model systems. We find that TGFβ, produced by PC12 cells, enhances scattering in response to HGF stimulation, increasing both cell–cell junction disassembly and cell migration. Further, gradients of TGFβ induce migratory mesenchymal cells to undergo chemotaxis towards the source of TGFβ. Interestingly, VEGF suppresses TGFβ-induced enhancement of scattering. These results have broad implications for how combinatorial growth factor signaling contributes to cancer metastasis, suggesting that VEGF and TGFβ might modulate HGF signaling to influence route selection during cancer progression.  相似文献   

4.
Epithelial-mesenchymal transition (EMT) is a morphogenetic process that endows epithelial cells with migratory and invasive potential. Mechanical and chemical signals from the tumor microenvironment can activate the EMT program, thereby permitting cancer cells to invade the surrounding stroma and disseminate to distant organs. Transforming growth factor β1 (TGFβ1) is a potent inducer of EMT that can also induce apoptosis depending on the microenvironmental context. In particular, stiff microenvironments promote EMT while softer ones promote apoptosis. Here, we investigated the molecular signaling downstream of matrix stiffness that regulates the phenotypic switch in response to TGFβ1 and uncovered a critical role for integrin-linked kinase (ILK). Specifically, depleting ILK from mammary epithelial cells precludes their ability to sense the stiffness of their microenvironment. In response to treatment with TGFβ1, ILK-depleted cells undergo apoptosis on both soft and stiff substrata. We found that knockdown of ILK decreases focal adhesions and increases cell–cell adhesions, thus shifting the balance from cell–matrix to cell–cell adhesion. High cell–matrix adhesion promotes EMT whereas high cell–cell adhesion promotes apoptosis downstream of TGFβ1. These results highlight an important role for ILK in controlling cell phenotype by regulating adhesive connections to the local microenvironment.  相似文献   

5.
Epithelial–mesenchymal transition (EMT) is an essential morphogenetic process during embryonic development. It can be induced in vitro by hepatocyte growth factor/scatter factor (HGF/SF), or by FGF-1 in our NBT-II cell model for EMT. We tested for a central role in EMT of a zinc-finger protein called Slug. Slug mRNA and protein levels were increased transiently in FGF-1–treated NBT-II cells. Transient or stable transfection of Slug cDNA in NBT-II cells resulted in a striking disappearance of the desmosomal markers desmoplakin and desmoglein from cell–cell contact areas, mimicking the initial steps of FGF-1 or HGF/SF- induced EMT. Stable transfectant cells expressed Slug protein and were less epithelial, with increased cell spreading and cell–cell separation in subconfluent cultures. Interestingly, NBT-II cells transfected with antisense Slug cDNA were able to resist EMT induction by FGF-1 or even HGF/SF. This antisense effect was suppressed by retransfection with Slug sense cDNA. Our results indicate that Slug induces the first phase of growth factor–induced EMT, including desmosome dissociation, cell spreading, and initiation of cell separation. Moreover, the antisense inhibition experiments suggest that Slug is also necessary for EMT.  相似文献   

6.
Cell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell–substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotide exchange factor (GEF)-H1 activates RhoA when released from microtubules to initiate a RhoA/Rho kinase/myosin light chain signaling pathway that regulates cellular contractility. However, the contributions of activated GEF-H1 to coordination of cytoskeletal dynamics during cell migration are unknown. We show that small interfering RNA-induced GEF-H1 depletion leads to decreased HeLa cell directional migration due to the loss of the Rho exchange activity of GEF-H1. Analysis of RhoA activity by using a live cell biosensor revealed that GEF-H1 controls localized activation of RhoA at the leading edge. The loss of GEF-H1 is associated with altered leading edge actin dynamics, as well as increased focal adhesion lifetimes. Tyrosine phosphorylation of focal adhesion kinase and paxillin at residues critical for the regulation of focal adhesion dynamics was diminished in the absence of GEF-H1/RhoA signaling. This study establishes GEF-H1 as a critical organizer of key structural and signaling components of cell migration through the localized regulation of RhoA activity at the cell leading edge.  相似文献   

7.
Vasodilator-stimulated phosphoprotein (VASP) is an actin regulatory protein that functions in adhesion and migration. In epithelial cells, VASP participates in cell–cell adhesion. At the molecular level, VASP drives actin bundling and polymerization. VASP activity is primarily regulated by phosphorylation. Three physiologically relevant phosphorylation sites significantly reduce actin regulatory activity and are targeted by several kinases, most notable Abl and protein kinases A and G (PKA and PKG). AMP-dependent kinase (AMPK) is best characterized as a cellular sensor of ATP depletion, but also alters actin dynamics in epithelial cells and participates in cell polarity pathways downstream of LKB1. While little is known about how AMPK direct changes in actin dynamics, AMPK has been shown to phosphorylate VASP at one of these three well-characterized PKA/PKG phosphorylation sites. Here we show that phosphorylation of VASP by AMPK occurs at a novel site, serine 322, and that phosphorylation at this site alters actin filament binding. We also show that inhibition of AMPK activity results in the accumulation of VASP at cell–cell adhesions and a concomitant increase in cell–cell adhesion.  相似文献   

8.
Epithelial‐mesenchymal transition (EMT), which can be caused by aberrant tyrosine kinase signalling, marks epithelial tumour progression and metastasis, yet the underlying molecular mechanism is not fully understood. Here, we report that Numb interacts with E‐cadherin (E‐cad) through its phosphotyrosine‐binding domain (PTB) and thereby regulates the localization of E‐cad to the lateral domain of epithelial cell–cell junction. Moreover, Numb engages the polarity complex Par3–aPKC–Par6 by binding to Par3 in polarized Madin‐Darby canine kidney cells. Intriguingly, after Src activation or hepatocyte growth factor (HGF) treatment, Numb decouples from E‐cad and Par3 and associates preferably with aPKC–Par6. Binding of Numb to aPKC is necessary for sequestering the latter in the cytosol during HGF‐induced EMT. Knockdown of Numb by small hairpin RNA caused a basolateral‐to‐apicolateral translocation of E‐cad and β‐catenin accompanied by elevated actin polymerization, accumulation of Par3 and aPKC in the nucleus, an enhanced sensitivity to HGF‐induced cell scattering, a decrease in cell–cell adhesion, and an increase in cell migration. Our work identifies Numb as an important regulator of epithelial polarity and cell–cell adhesion and a sensor of HGF signalling or Src activity during EMT.  相似文献   

9.
The scattering of Madin-Darby canine kidney cells in vitro mimics key aspects of epithelial-mesenchymal transitions during development, carcinoma cell invasion, and metastasis. Scattering is induced by hepatocyte growth factor (HGF) and is thought to involve disruption of cadherin-dependent cell-cell junctions. Scattering is enhanced on collagen and fibronectin, as compared with laminin1, suggesting possible cross talk between integrins and cell-cell junctions. We show that HGF does not trigger any detectable decrease in E-cadherin function, but increases integrin-mediated adhesion. Time-lapse imaging suggests that tension on cell-cell junctions may disrupt cell-cell adhesion. Varying the density and type of extracellular matrix proteins shows that scattering correlates with stronger integrin adhesion and increased phosphorylation of the myosin regulatory light chain. To directly test the role of integrin-dependent traction forces, substrate compliance was varied. Rigid substrates that produce high traction forces promoted scattering, in comparison to more compliant substrates. We conclude that integrin-dependent actomyosin traction force mediates the disruption of cell-cell adhesion during epithelial cell scattering.  相似文献   

10.
The rat cell line 804G assembles an extracellular matrix which induces not only the rapid adhesion and spreading of epithelial cells but also the assembly of a cell–matrix attachment device called the hemidesmosome. The major component of this matrix is laminin-5. We have purified rat laminin-5 from medium conditioned by 804G cells. Epithelial cells which are co-incubated with medium supplemented with soluble laminin-5 adhere and spread rapidly. Furthermore, human carcinoma cells undergo a dramatic morphologic change in the presence of laminin-5 and form orderly arrays resembling epithelial sheets. Soluble rat laminin-5 is selectively incorporated into an insoluble matrix of epithelial cellsin vitro,since rat-specific laminin-5 antibodies stain cell–substrate contacts. Addition of medium containing soluble laminin-5 to explanted, human corneal rims induces assembly of hemidesmosomes, important cell–matrix attachment devices. Furthermore, rat-specific laminin-5 antibodies stain areas of contact between corneal epithelium and basement membrane, indicating that rat laminin-5 from the medium is incorporated into basement membrane. We discuss the use of laminin-5 as a medium supplement for the culture of both epithelial cells and epithelial tissue explants.  相似文献   

11.
In migrating cells, actin polymerization promotes protrusion of the leading edge, whereas actomyosin contractility powers net cell body translocation. Although they promote F-actin-dependent protrusions of the cell periphery upon adhesion to fibronectin (FN), Abl family kinases inhibit cell migration on FN. We provide evidence here that the Abl-related gene (Arg/Abl2) kinase inhibits fibroblast migration by attenuating actomyosin contractility and regulating focal adhesion dynamics. arg-/- fibroblasts migrate at faster average speeds than wild-type (wt) cells, whereas Arg re-expression in these cells slows migration. Surprisingly, the faster migrating arg-/- fibroblasts have more prominent F-actin stress fibers and focal adhesions and exhibit increased actomyosin contractility relative to wt cells. Interestingly, Arg requires distinct functional domains to inhibit focal adhesions and actomyosin contractility. The kinase domain-containing Arg N-terminal half can act through the RhoA inhibitor p190RhoGAP to attenuate stress fiber formation and cell contractility. However, Arg requires both its kinase activity and its cytoskeleton-binding C-terminal half to fully inhibit focal adhesions. Although focal adhesions do not turn over efficiently in the trailing edge of arg-/- cells, the increased contractility of arg-/- cells tears the adhesions from the substrate, allowing for the faster migration observed in these cells. Together, our data strongly suggest that Arg inhibits cell migration by restricting actomyosin contractility and regulating its coupling to the substrate through focal adhesions.  相似文献   

12.
Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels.  相似文献   

13.
Hepatocyte Growth Factor (HGF)/c-MET signaling has an emerging role in promoting cell proliferation, survival, migration, wound repair and branching in a variety of cell types. HGF plays a crucial role as a mediator of stromal–epithelial interactions in the normal prostate but the precise biological function of HGF/c-Met interaction in the normal prostate and in prostate cancer is not clear. HGF has two naturally occurring splice variants and NK1, the smallest of these HGF variants, consists of the HGF amino terminus through the first kringle domain. We evaluated the intracellular signaling cascades and the morphological changes triggered by NK1 in human prostate epithelial cell line PNT1A which shows molecular and biochemical properties close to the normal prostate epithelium. We demonstrated that these cells express a functional c-MET, and cell exposure to NK1 induces the phosphorylation of tyrosines 1313/1349/1356 residues of c-MET which provide docking sites for signaling molecules. We observed an increased phosphorylation of ERK1/2, Akt, c-Src, p125FAK, SMAD2/3, and STAT3, down-regulation of the expression of epithelial cell–cell adhesion marker E-cadherin, and enhanced expression levels of mesenchymal markers vimentin, fibronectin, vinculin, α-actinin, and α-smooth muscle actin. This results in cell proliferation, in the appearance of a mesenchymal phenotype, in morphological changes resembling cell scattering and in wound healing. Our findings highlight the function of NK1 in non-tumorigenic human prostatic epithelial cells and provide a picture of the signaling pathways triggered by NK1 in a unique cell line.  相似文献   

14.
Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of colonies followed by disruption of cell–cell junctions and subsequent cell scattering. In Madin–Darby canine kidney cells, HGF/SF-induced motility involves actin reorganization mediated by Ras, but whether Ras and downstream signals regulate the breakdown of intercellular adhesions has not been established. Both HGF/SF and V12Ras induced the loss of the adherens junction proteins E-cadherin and β-catenin from intercellular junctions during cell spreading, and the HGF/SF response was blocked by dominant-negative N17Ras. Desmosomes and tight junctions were regulated separately from adherens junctions, because they were not disrupted by V12Ras. MAP kinase, phosphatidylinositide 3-kinase (PI 3-kinase), and Rac were required downstream of Ras, because loss of adherens junctions was blocked by the inhibitors PD098059 and LY294002 or by dominant-inhibitory mutants of MAP kinase kinase 1 or Rac1. All of these inhibitors also prevented HGF/SF-induced cell scattering. Interestingly, activated Raf or the activated p110α subunit of PI 3-kinase alone did not induce disruption of adherens junctions. These results indicate that activation of both MAP kinase and PI 3-kinase by Ras is required for adherens junction disassembly and that this is essential for the motile response to HGF/SF.  相似文献   

15.
Retraction is a major rate-limiting step in cell motility, particularly in slow moving cell types that form large stable adhesions. Myosin II dependent contractile forces are thought to facilitate detachment by physically pulling up the rear edge. However, retraction can occur in the absence of myosin II activity in cell types that form small labile adhesions. To investigate the role of contractile force generation in retraction, we performed traction force microscopy during the movement of fish epithelial keratocytes. By correlating changes in local traction stress at the rear with the area retracted, we identified four distinct modes of retraction. “Recoil” retractions are preceded by a rise in local traction stress, while rear edge is temporarily stuck, followed by a sharp drop in traction stress upon detachment. This retraction type was most common in cells generating high average traction stress. In “pull” type retractions local traction stress and area retracted increase concomitantly. This was the predominant type of retraction in keratocytes and was observed mostly in cells generating low average traction stress. “Continuous” type retractions occur without any detectable change in traction stress, and are seen in cells generating low average traction stress. In contrast, to many other cell types, “release” type retractions occur in keratocytes following a decrease in local traction stress. Our identification of distinct modes of retraction suggests that contractile forces may play different roles in detachment that are related to rear adhesion strength. To determine how the regulation of contractility via MLCK or Rho kinase contributes to the mechanics of detachment, inhibitors were used to block or augment these pathways. Modulation of MLCK activity led to the most rapid change in local traction stress suggesting its importance in regulating attachment strength. Surprisingly, Rho kinase was not required for detachment, but was essential for localizing retraction to the rear. We suggest that in keratocytes MLCK and Rho kinase play distinct, complementary roles in the respective temporal and spatial control of rear detachment that is essential for maintaining rapid motility.  相似文献   

16.
Stimulation of cultured epithelial cells with scatter factor/hepatocyte growth factor (HGF) results in individual cells detaching and assuming a migratory and invasive phenotype. Epithelial scattering recapitulates cancer progression and studies have implicated HGF signaling as a driver of cancer metastasis. Inhibitors of HGF signaling have been proposed to act as anti-cancer agents. We previously screened a small molecule library for compounds that block HGF-induced epithelial scattering. Most hits identified in this screen exhibit anti-mitotic properties. Here we assess the biological mechanism of a compound that blocks HGF-induced scattering with limited anti-mitotic activity. Analogs of this compound have one of two distinct activities: inhibiting either cell migration or cell proliferation with cell cycle arrest in G2/M. Each activity bears unique structure–activity relationships. The mechanism of action of anti-mitotic compounds is by inhibition of microtubule polymerization; these compounds entropically and enthalpically bind tubulin in the colchicine binding site, generating a conformational change in the tubulin dimer.  相似文献   

17.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

18.
Mechanical linkage between cell–cell and cell–extracellular matrix (ECM) adhesions regulates cell shape changes during embryonic development and tissue homoeostasis. We examined how the force balance between cell–cell and cell–ECM adhesions changes with cell spread area and aspect ratio in pairs of MDCK cells. We used ECM micropatterning to drive different cytoskeleton strain energy states and cell-generated traction forces and used a Förster resonance energy transfer tension biosensor to ask whether changes in forces across cell–cell junctions correlated with E-cadherin molecular tension. We found that continuous peripheral ECM adhesions resulted in increased cell–cell and cell–ECM forces with increasing spread area. In contrast, confining ECM adhesions to the distal ends of cell–cell pairs resulted in shorter junction lengths and constant cell–cell forces. Of interest, each cell within a cell pair generated higher strain energies than isolated single cells of the same spread area. Surprisingly, E-cadherin molecular tension remained constant regardless of changes in cell–cell forces and was evenly distributed along cell–cell junctions independent of cell spread area and total traction forces. Taken together, our results showed that cell pairs maintained constant E-cadherin molecular tension and regulated total forces relative to cell spread area and shape but independently of total focal adhesion area.  相似文献   

19.
Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system?s relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号