首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
What sequence features in integral membrane proteins determine which parts of the polypeptide chain will form transmembrane α-helices and which parts will be located outside the lipid bilayer? Previous studies on the integration of model transmembrane segments into the mammalian endoplasmic reticulum (ER) have provided a rather detailed quantitative picture of the relation between amino acid sequence and membrane-integration propensity for proteins targeted to the Sec61 translocon. We have now carried out a comparative study of the integration of Nout-Cin-orientated 19-residue-long polypeptide segments into the ER of the yeast Saccharomyces cerevisiae. We find that the ‘threshold hydrophobicity’ required for insertion into the ER membrane is very similar in S. cerevisiae and in mammalian cells. Further, when comparing the contributions to the apparent free energy of membrane insertion of the 20 natural amino acids between the S. cerevisiae and the mammalian ER, we find that the two scales are strongly correlated but that the absolute difference between the most hydrophobic and most hydrophilic residues is ∼ 2-fold smaller in S. cerevisiae.  相似文献   

2.
The membrane assembly of polytopic membrane proteins is a complicated process. Using Chinese hamster P-glycoprotein (Pgp) as a model protein, we investigated this process previously and found that Pgp expresses more than one topology. One of the variations occurs at the transmembrane (TM) domain including TM3 and TM4: TM4 inserts into membranes in an Nin-Cout rather than the predicted Nout-Cin orientation, and TM3 is in cytoplasm rather than the predicted Nin-Cout orientation in the membrane. It is possible that TM4 has a strong activity to initiate the Nin-Cout membrane insertion, leaving TM3 out of the membrane. Here, we tested this hypothesis by expressing TM3 and TM4 in isolated conditions. Our results show that TM3 of Pgp does not have de novo Nin-Cout membrane insertion activity whereas TM4 initiates the Nin-Cout membrane insertion regardless of the presence of TM3. In contrast, TM3 and TM4 of another polytopic membrane protein, cystic fibrosis transmembrane conductance regulator (CFTR), have a similar level of de novo Nin-Cout membrane insertion activity and TM4 of CFTR functions only as a stop-transfer sequence in the presence of TM3. Based on these findings, we propose that 1) the membrane insertion of TM3 and TM4 of Pgp does not follow the sequential model, which predicts that TM3 initiates Nin-Cout membrane insertion whereas TM4 stops the insertion event; and 2) “leaving one TM segment out of the membrane” may be an important folding mechanism for polytopic membrane proteins, and it is regulated by the Nin-Cout membrane insertion activities of the TM segments.  相似文献   

3.
Membrane insertion by the Sec61 translocon in the endoplasmic reticulum (ER) is highly dependent on hydrophobicity. This places stringent hydrophobicity requirements on transmembrane domains (TMDs) from single-spanning membrane proteins. On examining the single-spanning influenza A membrane proteins, we found that the strict hydrophobicity requirement applies to the Nout-Cin HA and M2 TMDs but not the Nin-Cout TMDs from the type II membrane protein neuraminidase (NA). To investigate this discrepancy, we analyzed NA TMDs of varying hydrophobicity, followed by increasing polypeptide lengths, in mammalian cells and ER microsomes. Our results show that the marginally hydrophobic NA TMDs (ΔGapp > 0 kcal/mol) require the cotranslational insertion process for facilitating their inversion during translocation and a positively charged N-terminal flanking residue and that NA inversion enhances its plasma membrane localization. Overall the cotranslational inversion of marginally hydrophobic NA TMDs initiates once ∼70 amino acids past the TMD are synthesized, and the efficiency reaches 50% by ∼100 amino acids, consistent with the positioning of this TMD class in type II human membrane proteins. Inversion of the M2 TMD, achieved by elongating its C-terminus, underscores the contribution of cotranslational synthesis to TMD inversion.  相似文献   

4.
In mammalian cells, most integral membrane proteins are initially inserted into the endoplasmic reticulum membrane by the so-called Sec61 translocon. However, recent predictions suggest that many transmembrane helices (TMHs) in multispanning membrane proteins are not sufficiently hydrophobic to be recognized as such by the translocon. In this study, we have screened 16 marginally hydrophobic TMHs from membrane proteins of known three-dimensional structure. Indeed, most of these TMHs do not insert efficiently into the endoplasmic reticulum membrane by themselves. To test if loops or TMHs immediately upstream or downstream of a marginally hydrophobic helix might influence the insertion efficiency, insertion of marginally hydrophobic helices was also studied in the presence of their neighboring loops and helices. The results show that flanking loops and nearest-neighbor TMHs are sufficient to ensure the insertion of many marginally hydrophobic helices. However, for at least two of the marginally hydrophobic helices, the local interactions are not enough, indicating that post-insertional rearrangements are involved in the folding of these proteins.  相似文献   

5.
The insertion of inner membrane proteins in Escherichia coli occurs almost exclusively via the SecYEG pathway, while some membrane proteins require the membrane protein insertase YidC. In vitro analysis demonstrates that subunit a of the F1F0 ATP synthase (F0a) is strictly dependent on Ffh, SecYEG and YidC for its membrane insertion but independent of the proton motive force. The insertion of the first transmembrane segment of F0a also depends on Ffh and SecYEG but not on YidC, whereas the insertion is strongly dependent on the proton motive force, unlike the full-length F0a protein. These data demonstrate an extensive role of YidC in the assembly of the F0 sector of the F1F0 ATP synthase.  相似文献   

6.
The present study investigated the effects of ΔΨ and ΔpH (pH gradient) on the interaction of cytochrome c with a mitochondrial mimetic membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) leading to vesicle fusion. ΔpH generated by lowered bulk pH (pHout) of PCPECL liposomes, with an internal pH (pHin) of 8.0, favored vesicle fusion with a titration sigmoidal profile (pK a?~?6.9). Conversely, ΔpH generated by enhanced pHin of PCPECL at a pHout of 6.0 favored the fusion of vesicles with a linear profile. We did not observe a significant amount of liposome fusion when ΔpH was generated by lowered pHin at a pHout of 8.0. At bulk acidic pH, ΔΨ generated by Na+ gradient also favored cyt c-promoted vesicle fusion. At acidic and alkaline pHout, the presence of ΔpH and ΔΨ did not affect cytochrome c binding affinity measured by pyrene quenching. Therefore, cytochrome c-mediated PC/PE/CL vesicle fusion is dependent of ionization of the protein site L (acidic pH) and the presence of transmembrane potential. The effect of transmembrane potential is probably related to the generation of defects on the lipid bilayer. These results are consistent with previous reports showing that cytochrome c release prior to the dissipation of the ΔΨM blocks inner mitochondrial membrane fusion during apoptosis.  相似文献   

7.
t is the holin gene for coliphage T4, encoding a 218-amino-acid (aa) protein essential for the inner membrane hole formation that initiates lysis and terminates the phage infection cycle. T is predicted to be an integral membrane protein that adopts an Nin-Cout topology with a single transmembrane domain (TMD). This holin topology is different from those of the well-studied holins S105 (3 TMDs; Nout-Cin) of the coliphage lambda and S68 (2 TMDs; Nin-Cin) of the lambdoid phage 21. Here, we used random mutagenesis to construct a library of lysis-defective alleles of t to discern residues and domains important for holin function and for the inhibition of lysis by the T4 antiholin, RI. The results show that mutations in all 3 topological domains (N-terminal cytoplasmic, TMD, and C-terminal periplasmic) can abrogate holin function. Additionally, several lysis-defective alleles in the C-terminal domain are no longer competent in binding RI. Taken together, these results shed light on the roles of the previously uncharacterized N-terminal and C-terminal domains in lysis and its real-time regulation.  相似文献   

8.
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.  相似文献   

9.
H+-transporting F1Fo ATP synthase catalyzes the synthesis of ATP via coupled rotary motors within Fo and F1. H+ transport at the subunit a–c interface in trans-membranous Fo drives rotation of the c-ring within the membrane, with subunit c being bound in a complex with the γ and ε subunits extending from the membrane. Finally, the rotation of subunit γ within the α3β3 sector of F1 mechanically drives ATP synthesis within the catalytic sites. In this review, we propose and provide evidence supporting the route of proton transfer via half channels from one side of the membrane to the other, and the mechanism of gating H+ binding to and release from Asp61 of subunit c, via conformational movements of Arg210 in subunit a. We propose that protons are gated from the inside of a four-helix bundle at the periplasmic side of subunit a to drive protonation of cAsp61, and that this gating movement is facilitated by the swiveling of trans-membrane helices (TMHs) 4 and 5 at the site of interaction with cAsp61 on the periphery of the c-ring. Proton release to the cytoplasmic half channel is facilitated by the movement of aArg210 as a consequence of this proposed helical swiveling. Finally, release from the cytoplasmic half channel is mediated by residues in a complex of interacting extra-membraneous loops formed between TMHs of both subunits a and c. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

10.
Bacteriophage-λ-induced host-cell lysis requires two phage-encoded proteins, the S holin and the R transglycosylase. At a specific time during infection, the holin forms a lesion in the cytoplasmic membrane that permits access of the R protein to its substrate, the peptidoglycan. The λS gene represents the prototype of holin genes with a dual-start motif; they encode two proteins, a lysis effector and a lysis inhibitor. Although the two S proteins differ only by two amino acids (Met-1 and Lys-2) at the N-terminus, the longer product (S107) acts as an inhibitor of the lysis effector (S105). The functional difference between the proteins has been previously ascribed to the Lys-2 residue in S107. It was therefore of interest to determine the subcellular localization of the N-terminus of either S protein. To study the membrane topology of the S proteins, we used the topology probe TEM β-lactamase and an N-terminal tag derived from the Pseudomonas aeruginosa phage Pf3 coat protein. We show that both S proteins have a type III (Nout/Cin) topology. The results provide insight into the regulatory mechanism imposed by the dual-start motif and will be discussed in terms of a model for temporal regulation of the S-dependent “hole” in the membrane. Received: 28 January 1999 / Accepted: 23 April 1999  相似文献   

11.
12.
Nascent chains are known to be targeted to the endoplasmic reticulum membrane either by a signal recognition particle (SRP)-dependent co-translational or by an SRP-independent post-translational translocation route depending on signal sequences. Using a set of model and cellular proteins carrying an N-terminal signal anchor sequence of controlled hydrophobicity and yeast mutant strains defective in SRP or Sec62 function, the hydrophobicity-dependent targeting efficiency and targeting pathway preference were systematically evaluated. Our results suggest that an SRP-dependent co-translational and an SRP-independent post-translational translocation are not mutually exclusive for signal anchor proteins and that moderately hydrophobic ones require both SRP and Sec62 for proper targeting and translocation to the endoplasmic reticulum. Further, defect in Sec62 selectively reduced signal sequences inserted in an Nin-Cout (type II) membrane topology, implying an undiscovered role of Sec62 in regulating the orientation of the signal sequence in an early stage of translocation.  相似文献   

13.
The chloroplastic outer envelope protein Toc34 is inserted into the membrane by a COOH-terminal membrane anchor domain in the orientation Ncyto-Cin. The insertion is independent of ATP and a cleavable transit sequence. The cytosolic domain of Toc34 does not influence the insertion process and can be replaced by a different hydrophilic reporter peptide. Inversion of the COOH-terminal, 45-residue segment, including the membrane anchor domain (Toc34Cinv), resulted in an inverted topology of the protein, i.e., Nin-Ccyto. A mutual exchange of the charged amino acid residues NH2- and COOH-proximal of the hydrophobic α-helix indicates that a double-positive charge at the cytosolic side of the transmembrane α-helix is the sole determinant for its topology. When the inverted COOH-terminal segment was fused to the chloroplastic precursor of the ribulose-1,5-bisphosphate carboxylase small subunit (pS34Cinv), it engaged the transit sequence–dependent import pathway. The inverted peptide domain of Toc34 functions as a stop transfer signal and is released out of the outer envelope protein translocation machinery into the lipid phase. Simultaneously, the NH2-terminal part of the hybrid precursor remained engaged in the inner envelope protein translocon, which could be reversed by the removal of ATP, demonstrating that only an energy-dependent force but no further ionic interactions kept the precursor in the import machinery.  相似文献   

14.
Calcium is sequestered into vacuoles of oat (Avena sativa L.) root cells via a H+/Ca2+ antiporter, and vesicles derived from the vacuolar membrane (tonoplast) catalyze an uptake of calcium which is dependent on protons (pH gradient [ΔpH] dependent). The first step toward purification and identification of the H+/Ca2+ antiporter is to solubilize and reconstitute the transport activity in liposomes. The vacuolar H+/Ca2+ antiporter was solubilized with octylglucoside in the presence of soybean phospholipids and glycerol. After centrifugation, the soluble proteins were reconstituted into liposomes by detergent dilution. A ΔpH (acid inside) was generated in the proteoliposomes with an NH4Cl gradient (NH4+in » NH4+out) as determined by methylamine uptake. Fundamental properties of ΔpH dependent calcium uptake such as the Km for calcium (~15 micromolar) and the sensitivity to inhibitors such as N,N′-dicyclohexylcarbodiimide, ruthenium red, and lanthanum, were similar to those found in membrane vesicles, indicating that the H+/Ca2+ antiporter has been reconstituted in active form.  相似文献   

15.
Mitochondria are essential organelles with dynamic morphology and function. Post‐translational modifications (PTMs), which include protein ubiquitination, are critically involved in animal and yeast mitochondrial dynamics. How PTMs contribute to plant mitochondrial dynamics is just beginning to be elucidated, and mitochondrial enzymes involved in ubiquitination have not been reported from plants. In this study, we identified an Arabidopsis mitochondrial localized ubiquitin protease, UBP27, through a screen that combined bioinformatics and fluorescent fusion protein targeting analysis. We characterized UBP27 with respect to its membrane topology and enzymatic activities, and analysed the mitochondrial morphological changes in UBP27T‐DNA insertion mutants and overexpression lines. We have shown that UBP27 is embedded in the mitochondrial outer membrane with an Nin–Cout orientation and possesses ubiquitin protease activities in vitro. UBP27 demonstrates similar sub‐cellular localization, domain structure, membrane topology and enzymatic activities with two mitochondrial deubiquitinases, yeast ScUBP16 and human HsUSP30, which indicated that these proteins are functional orthologues in eukaryotes. Although loss‐of‐function mutants of UBP27 do not show obvious phenotypes in plant growth and mitochondrial morphology, UBP27 overexpression can change mitochondrial morphology from rod to spherical shape and reduce the mitochondrial association of dynamin‐related protein 3 (DRP3) proteins, large GTPases that serve as the main mitochondrial fission factors. Thus, our study has uncovered a plant ubiquitin protease that plays a role in mitochondrial morphogenesis possibly through modulation of the function of organelle division proteins.  相似文献   

16.
Nitroxide radicals are widely used as molecular probes in different fields of chemistry and biology. In this work, we describe pH-sensitive imidazoline- and imidazolidine-based nitroxides with pK values in the range 4.7-7.6 (2,2,3,4,5,5-hexamethylperhydroimidazol-1-oxyl, 4-amino-2,2,5,5-tetramethyl-2,5-dihydro-1H-imidazol-1-oxyl, 4-dimethylamino-2,2-diethyl-5,5-dimethyl-2,5-dihydro-1H-imidazol-1-oxyl, and 2,2-diethyl-5,5-dimethyl-4-pyrrolidyline-1-yl-2,5-dihydro-1H-imidazol-1-oxyl), which allow the pH-monitoring inside chloroplasts. We have demonstrated that EPR spectra of these spin-probes localized in the thylakoid lumen markedly change with the light-induced acidification of the thylakoid lumen in chloroplasts. Comparing EPR spectrum parameters of intrathylakoid spin-probes with relevant calibrating curves, we could estimate steady-state values of lumen pHin established during illumination of chloroplasts with continuous light. For isolated bean (Vicia faba) chloroplasts suspended in a medium with pHout = 7.8, we found that pHin ≈ 5.4-5.7 in the state of photosynthetic control, and pHin ≈ 5.7-6.0 under photophosphorylation conditions. Thus, ATP synthesis occurs at a moderate acidification of the thylakoid lumen, corresponding to transthylakoid pH difference ΔpH ≈ 1.8-2.1. These values of ΔpH are consistent with a point of view that under steady-state conditions the proton gradient ΔpH is the main contributor to the proton motive force driving the operation of ATP synthesis, provided that stoichiometric ratio H+/ATP is n ≥ 4-4.7.  相似文献   

17.
The differences between leaves of different age according to their descending insertion level (starting from the youngest, 18th leaf) were compared with the changes occurring during the corresponding period of ontogenesis of the 18th unshaded leaf using the gas exchange [net photosynthetic CO2 uptake (P N ), water vapour efflux (E)] of the adaxial and abaxial surfaces of tobacco leaves as an example. Experimental elimination of the influence of shading during the involved period of ontogenesis of the 18th leaf manifested itself by a relatively slower decrease inP N and by fluctuation of theE values at approximately the same level. Thus the differences between leaves of different insertion levels cannot be exclusively ascribed to the effect of their ontogenetic age.  相似文献   

18.
Low expression and instability during isolation are major obstacles preventing adequate structure‐function characterization of membrane proteins (MPs). To increase the likelihood of generating large quantities of protein, C‐terminally fused green fluorescent protein (GFP) is commonly used as a reporter for monitoring expression and evaluating purification. This technique has mainly been restricted to MPs with intracellular C‐termini (Cin) due to GFP's inability to fluoresce in the Escherichia coli periplasm. With the aid of Glycophorin A, a single transmembrane spanning protein, we developed a method to convert MPs with extracellular C‐termini (Cout) to Cin ones providing a conduit for implementing GFP reporting. We tested this method on eleven MPs with predicted Cout topology resulting in high level expression. For nine of the eleven MPs, a stable, monodisperse protein‐detergent complex was identified using an extended fluorescence‐detection size exclusion chromatography procedure that monitors protein stability over time, a critical parameter affecting the success of structure‐function studies. Five MPs were successfully cleaved from the GFP tag by site‐specific proteolysis and purified to homogeneity. To address the challenge of inefficient proteolysis, we explored expression and purification conditions in the absence of the fusion tag. Contrary to previous studies, optimal expression conditions established with the fusion were not directly transferable for overexpression in the absence of the GFP tag. These studies establish a broadly applicable method for GFP screening of MPs with Cout topology, yielding sufficient protein suitable for structure‐function studies and are superior to expression and purification in the absence GFP fusion tagging.  相似文献   

19.

Aim

To compare cardiovascular magnetic resonance (CMR)-derived right ventricular fractional shortening (RVFS), tricuspid annular plane systolic excursion with a reference point within the right ventricular apex (TAPSEin) and with one outside the ventricle (TAPSEout) with the standard volumetric approach in patients with hypertrophic cardiomyopathy (HCM).

Methods and results

105 patients with HCM and 20 healthy subjects underwent CMR. In patients with HCM, TAPSEin (r = 0.31, p = 0.001) and RVFS (r = 0.35, p = 0.0002) revealed a significant but weak correlation with right ventricular ejection fraction (RVEF), whereas TAPSEout (r = 0.57, p < 0.0001) showed a moderate correlation with RVEF. The ability to predict RVEF < 45 % in HCM patients was best for TAPSEout. In patients with hypertrophic obstructive cardiomyopathy (HOCM), RVEF showed a significant but weak correlation with TAPSEout (r = 0.36, p = 0.02) and no correlation with TAPSEin (r = 0.05, p = 0.07) and RVFS (r = 0.02, p = 0.2). In patients with hypertrophic non-obstructive cardiomyopathy (HNCM), there was a moderate correlation between RVEF and TAPSEout (r = 0.57, p < 0.0001) and a weak correlation with TAPSEin (r = 0.39, p = 0.001) and RVFS (r = 0.38, p = 0.002). In the 20 healthy controls, there was a strong correlation between RVEF and all semi-quantitative measurements.

Conclusion

CMR-derived TAPSEin is not suitable to determine right ventricular function in HCM patients. TAPSEout showed a good correlation with RVEF in HNCM patients but only a weak correlation in HOCM patients. TAPSEout might be used for screening but the detection of subtle changes in RV function requires the 3D volumetric approach.  相似文献   

20.
Tsyregma Li  Bruno Antonsson 《BBA》2010,1797(1):52-62
In the present study, we compared alkali-resistant BAX insertion into the outer mitochondrial membrane, mitochondrial remodeling, mitochondrial membrane potential changes, and cytochrome c (Cyt c) release from isolated brain mitochondria triggered by recombinant BAX oligomerized with 1% octyl glucoside (BAXoligo) and by a combination of monomeric BAX (BAXmono) and caspase 8-cleaved C-terminal fragment of recombinant BID (truncated BID, tcBID). We also examined whether the effects induced by BAXoligo or by BAXmono activated with tcBID depended on induction of the mitochondrial permeability transition. The results obtained in this study revealed that tcBID plus BAXmono produced BAX insertion and Cyt c release without overt changes in mitochondrial morphology. On the contrary, treatment of mitochondria with BAXoligo resulted in BAX insertion and Cyt c release, which were accompanied by gross distortion of mitochondrial morphology. The effects of BAXoligo could be at least partially suppressed by mitochondrial depolarization. The effects of tcBID plus BAXmono were insensitive to depolarization. BAXoligo produced similar BAX insertion, mitochondrial remodeling, and Cyt c release in KCl- and in N-methyl-d-glucamine-based incubation media indicating a non-essential role for K+ influx into mitochondria in these processes. A combination of cyclosporin A and ADP, inhibitors of the mitochondrial permeability transition, attenuated Cyt c release, mitochondrial remodeling, and depolarization induced by BAXoligo, but failed to influence the effects produced by tcBID plus BAXmono. Thus, our results suggest a significant difference in the mechanisms of the outer mitochondrial membrane permeabilization and Cyt c release induced by detergent-oligomerized BAXoligo and by BAX activated with tcBID.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号