首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.  相似文献   

2.
Widely spread in Gram‐negative bacteria, the type VI secretion system (T6SS) secretes many effector‐immunity protein pairs to help the bacteria compete against other prokaryotic rivals, and infect their eukaryotic hosts. Tle5 and Tle5B are two phospholipase effector protein secreted by T6SS of Pseudomonas aeruginosa. They can facilitate the bacterial internalization process into human epithelial cells by interacting with Akt protein of the PI3K‐Akt signal pathway. Tli5 and PA5086‐5088 are cognate immunity proteins of Tle5 and Tle5B, respectively. They can interact with their cognate effector proteins to suppress their virulence. Here, we report the crystal structure of Tli5 at 2.8Å resolution and successfully fit it into the Small angle X‐ray scattering (SAXS) model of the complete Tle5–Tli5 complex. We identified two important motifs in Tli5 through sequence and structural analysis. One is a conserved loop‐β‐hairpin motif that exists in the Tle5 immunity homologs, the other is a long and sharp α‐α motif that directly interacts with Tle5 according to SAXS data. We also distinguished the structural features of Tle5 and Tle5B family immunity proteins. Together, our work provided insights into a novel inhibition mechanism that may enhance our understanding of phospholipase D family proteins.  相似文献   

3.
The bacterial Type VI secretion system (T6SS) is a dynamic macromolecular structure that promotes inter- and intra-species competition through the delivery of toxic effector proteins into neighbouring cells. The T6SS contains 14 well-characterised core proteins necessary for effector delivery (TssA-M, PAAR). In this study, we have identified a novel accessory component required for optimal T6SS activity in the opportunistic pathogen Serratia marcescens, which we name TagV. Deletion of tagV, which encodes an outer membrane lipoprotein, caused a reduction in the T6SS-dependent antibacterial activity of S. marcescens Db10. Mutants of S. marcescens lacking the core component TssJ, a distinct outer membrane lipoprotein previously considered essential for T6SS firing, retained a modest T6SS activity that could be abolished through deletion of tagV. TagV did not interact with the T6SS membrane complex proteins TssL or TssM, but is proposed to bind to peptidoglycan, indicating that the mechanism by which TagV promotes T6SS firing differs from that of TssJ. Homologues of tagV were identified in several other bacterial genera, suggesting that the accessory function of TagV is not restricted to S. marcescens. Together, our findings support the existence of a second, TssJ-independent mechanism for T6SS firing that is dependent upon the activity of TagV proteins.  相似文献   

4.
The recently identified type VI secretion systems (T6SS) have a crucial function in the virulence of various proteobacteria, including the human pathogen Vibrio cholerae. T6SS are encoded by a conserved gene cluster comprising approximately 15 open reading frames, mediating the appearance of Hcp and VgrG proteins in cell culture supernatants. Here, we analysed the function of the V. cholerae T6SS member ClpV, a specialized AAA+ protein. ClpV is crucial for a functional T6SS and interacts through its N‐terminal domain with the VipA/VipB complex that is composed of two conserved and essential members of T6SS. Transferring ClpV substrate specificity to a distinct AAA+ protein involved in proteolysis caused degradation of VipA but not Hcp or VgrG2, suggesting that VipA rather than Hcp/VgrG2 functions as a primary ClpV substrate. Strikingly, VipA/VipB form tubular, cogwheel‐like structures that are converted by a threading activity of ClpV into small complexes. ClpV‐mediated remodelling of VipA/VipB tubules represents a crucial step in T6S, illuminating an unexpected role of an ATPase component in protein secretion.  相似文献   

5.
细菌VI型分泌系统(type VI secretion system,T6SS)作为一个动态多蛋白复合体,各元件之间分工明确,转运各种效应蛋白作用于竞争细菌获得自我生长优势。鲍曼不动杆菌(Acinetobacter baumannii,Ab)通过T6SS介导细菌在微生物群落中的竞争能力,影响其耐药进化、宿主侵袭感染等过程。其中,缬氨酸-甘氨酸-精氨酸G蛋白三聚体(valine-glycine repeat protein G,VgrG)、脯氨酸-丙氨酸-丙氨酸-精氨酸重复序列蛋白(proline-alanine-alanine-arginine,PAAR)、溶血素共调节蛋白(hemolysin-coregulated protein,Hcp)和效应-免疫(effector-immunity,E-I)对发挥着关键作用。有关T6SS的研究总结虽然很多,但是鲜有文章系统概述其临床应用前景,因为这对T6SS功能蛋白的鉴定、特性、转运机制等基础研究的进展提出了挑战。本文通过综述鲍曼不动杆菌中T6SS的分布、主要功能蛋白的特性及转运机制的研究进展,结合T6SS的应用案例,提供其应用的可行性证据。以期进一步推动鲍曼不动杆菌VI型分泌系统基因和功能的研究,为开发新型抗感染疫苗、筛选合适的靶点抑制剂及生产工程化药物递送工具提供新的思路。  相似文献   

6.
The bacterial type VI secretion system (T6SS) utilizes many toxic effectors to gain advantage over interbacterial competition and eukaryotic host infection. Meanwhile, the cognate immunity proteins of these effectors are employed to protect themselves from the virulence. TseT and TsiT form an effector‐immunity (E‐I) protein pair secreted by T6SS of Pseudomonas aeruginosa. TseT is toxic for other bacteria, whereas TsiT can suppress the virulence of TseT. Here, we report the crystal structure of TsiT at 1.6 Å resolution. TsiT is a typical α + β class protein and belongs to a novel Imm52 protein family of the polymorphic toxin system. Apart from TsiT, only one structure of the Imm52 family proteins is present in the Protein Data Bank (PDB), but that structure is not characterized and shares low sequence identity with TsiT. We characterized the basic features of TsiT structure and identified conserved residues of the Imm52 family proteins according to homology comparison. Our work provided structural information of a new protein family and should aid future functional studies.  相似文献   

7.
Contractile injection systems are multiprotein complexes that use a spring-like mechanism to deliver effectors into target cells. In addition to using a conserved mechanism, these complexes share a common core known as the tail. The tail comprises an inner tube tipped by a spike, wrapped by a contractile sheath, and assembled onto a baseplate. Here, using the type VI secretion system (T6SS) as a model of contractile injection systems, we provide molecular details on the interaction between the inner tube and the spike. Reconstitution into the Escherichia coli heterologous host in the absence of other T6SS components and in vitro experiments demonstrated that the Hcp tube component and the VgrG spike interact directly. VgrG deletion studies coupled to functional assays showed that the N-terminal domain of VgrG is sufficient to interact with Hcp, to initiate proper Hcp tube polymerization, and to promote sheath dynamics and Hcp release. The interaction interface between Hcp and VgrG was then mapped using docking simulations, mutagenesis, and cysteine-mediated cross-links. Based on these results, we propose a model in which the VgrG base serves as adaptor to recruit the first Hcp hexamer and initiates inner tube polymerization.  相似文献   

8.
Secretion systems are essential for bacteria to survive and manipulate their environment. The bacterial type VI secretion system (T6SS) generates the force needed for protein translocation by the contraction of a long polymer called sheath. The sheath is a six‐start helical assembly of interconnected VipA/VipB subunits. The mechanism of T6SS sheath contraction is unknown. Here, we show that elongating the N‐terminal VipA linker or eliminating charge of a specific VipB residue abolishes sheath contraction and delivery of effectors into target cells. Mass spectrometry analysis identified the inner tube protein Hcp, spike protein VgrG, and other components of the T6SS baseplate significantly enriched in samples of the stable non‐contractile sheaths. The ability to lock the T6SS in the pre‐firing state opens new possibilities for understanding its mode of action.  相似文献   

9.
安影  董涛 《微生物学报》2023,63(9):3428-3440
蛋白分泌作为细胞之间传递信号的途径之一,在微生物生存竞争中也扮演着重要的角色。革兰氏阴性菌可以通过Ⅵ型分泌系统(type Ⅵ secretion system, T6SS)将效应蛋白传递至胞外或原核和真核微生物中,从而介导微生物间的竞争或宿主-细菌的相互作用,最终建立竞争优势。本文主要总结了T6SS的结构与组成,并重点对效应蛋白的装配以及其与免疫蛋白的作用机制的研究进展进行阐述,为以后靶向T6SS抗菌药物的研制提供新思路。  相似文献   

10.
The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath‐like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero‐aggregative Escherichia coli Sci‐1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self‐protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C‐terminal extension domain of VgrG1, including a transthyretin‐like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C‐terminus of VgrG proteins.  相似文献   

11.
The type VI secretion system (T6SS) is a spear-like nanomachine found in gram-negative pathogens for delivery of toxic effectors to neighboring bacterial and host cells. Its assembly requires a tip spike complex consisting of a VgrG-trimer, a PAAR protein, and the interacting effectors. However, how the spike controls T6SS assembly remains elusive. Here we investigated the role of three VgrG-effector pairs in Aeromonas dhakensis strain SSU, a clinical isolate with a constitutively active T6SS. By swapping VgrG tail sequences, we demonstrate that the C-terminal ~30 amino-acid tail dictates effector specificity. Double deletion of vgrG1&2 genes (VgrG3+) abolished T6SS secretion, which can be rescued by ectopically expressing chimeric VgrG3 with a VgrG1/2-tail but not the wild type VgrG3. In addition, deletion of effector-specific chaperones also severely impaired T6SS secretion, despite the presence of intact VgrG and effector proteins, in both SSU and Vibrio cholerae V52. We further show that SSU could deliver a V. cholerae effector VasX when expressing a plasmid-borne chimeric VgrG with VasX-specific VgrG tail and chaperone sequences. Pull-down analyses show that two SSU effectors, TseP and TseC, could interact with their cognate VgrGs, the baseplate protein TssK, and the key assembly chaperone TssA. Effectors TseL and VasX could interact with TssF, TssK and TssA in V. cholerae. Collectively, we demonstrate that chimeric VgrG-effector pairs could bypass the requirement of heterologous VgrG complex and propose that effector-stuffing inside the baseplate complex, facilitated by chaperones and the interaction with structural proteins, serves as a crucial structural determinant for T6SS assembly.  相似文献   

12.
Type VI secretion systems (T6SSs) are cell envelope-spanning protein complexes that Gram-negative bacteria use to inject a diverse arsenal of antibacterial toxins into competitor cells. Recently, Wang et al. reported that the H2-T6SS of Pseudomonas aeruginosa delivers the peptidoglycan recycling amidase, AmpDh3, into the periplasm of recipient cells where it is proposed to act as a peptidoglycan degrading toxin. They further reported that PA0808, the open reading frame downstream of AmpDh3, encodes an immunity protein that localizes to the periplasm where it binds to and inactivates intercellularly delivered AmpDh3, thus protecting against its toxic activity. Given that AmpDh3 has an established role in cell wall homeostasis and that no precedent exists for cytosolic enzymes moonlighting as T6SS effectors, we attempted to replicate these findings. We found that cells lacking PA0808 are not susceptible to bacterial killing by AmpDh3 and that PA0808 and AmpDh3 do not physically interact in vitro or in vivo. Additionally, we found no evidence that AmpDh3 is exported from cells, including by strains with a constitutively active H2-T6SS. Finally, subcellular fractionation experiments and a 1.97 Å crystal structure reveal that PA0808 does not contain a canonical signal peptide or localize to the correct cellular compartment to confer protection against a cell wall targeting toxin. Taken together, these results cast doubt on the assertion that AmpDh3-PA0808 constitutes an H2-T6SS effector–immunity pair.  相似文献   

13.
型分泌系统(typeⅥsecretion system,T6SS)是一种强大的细菌分子武器,它通过将效应蛋白注入原核或真核细胞而介导细菌间竞争并影响宿主的生命活动。T6SS广泛分布于革兰氏阴性菌中,主要存在于变形菌门(Proteobacteria)。尽管T6SS的研究大多集中在动物相关细菌上,但它在植物相关细菌中的作用不能被忽视。本文对植物相关细菌的T6SS进行了较为详细的介绍,主要从T6SS的发现、T6SS在植物相关细菌间竞争中的作用、在细菌与植物互作中的作用以及在植物生物防治中的作用等4个方面综述了最新的研究成果,旨在为今后更好地研究植物相关细菌T6SS的生物学功能及其应用提供指导。  相似文献   

14.
The Type VI secretion system (T6SS) is a widespread macromolecular structure that delivers protein effectors to both eukaryotic and prokaryotic recipient cells. The current model describes the T6SS as an inverted phage tail composed of a sheath‐like structure wrapped around a tube assembled by stacked Hcp hexamers. Although recent progress has been made to understand T6SS sheath assembly and dynamics, there is no evidence that Hcp forms tubes in vivo. Here we show that Hcp interacts with TssB, a component of the T6SS sheath. Using a cysteine substitution approach, we demonstrate that Hcp hexamers assemble tubes in an ordered manner with a head‐to‐tail stacking that are used as a scaffold for polymerization of the TssB/C sheath‐like structure. Finally, we show that VgrG but not TssB/C controls the proper assembly of the Hcp tubular structure. These results highlight the conservation in the assembly mechanisms between the T6SS and the bacteriophage tail tube/sheath.  相似文献   

15.
Pseudomonas aeruginosa is a Gram-negative bacterium causing chronic infections in cystic fibrosis patients. Such infections are associated with an active type VI secretion system (T6SS), which consists of about 15 conserved components, including the AAA+ ATPase, ClpV. The T6SS secretes two categories of proteins, VgrG and Hcp. Hcp is structurally similar to a phage tail tube component, whereas VgrG proteins show similarity to the puncturing device at the tip of the phage tube. In P. aeruginosa, three T6SSs are known. The expression of H1-T6SS genes is controlled by the RetS sensor. Here, 10 vgrG genes were identified in the PAO1 genome, among which three are co-regulated with H1-T6SS, namely vgrG1a/b/c. Whereas VgrG1a and VgrG1c were secreted in a ClpV1-dependent manner, secretion of VgrG1b was ClpV1-independent. We show that VgrG1a and VgrG1c form multimers, which confirmed the VgrG model predicting trimers similar to the tail spike. We demonstrate that Hcp1 secretion requires either VgrG1a or VgrG1c, which may act independently to puncture the bacterial envelope and give Hcp1 access to the surface. VgrG1b is not required for Hcp1 secretion. Thus, VgrG1b does not require H1-T6SS for secretion nor does H1-T6SS require VgrG1b for its function. Finally, we show that VgrG proteins are required for secretion of a genuine H1-T6SS substrate, Tse3. Our results demonstrate that VgrG proteins are not only secreted components but are essential for secretion of other T6SS substrates. Overall, we emphasize variability in behavior of three P. aeruginosa VgrGs, suggesting that, although very similar, distinct VgrGs achieve specific functions.  相似文献   

16.
The bacterial type VI secretion system (T6SS) is a supra-molecular complex akin to bacteriophage tails, with VgrG proteins acting as a puncturing device. The Pseudomonas aeruginosa H1-T6SS has been extensively characterized. It is involved in bacterial killing and in the delivery of three toxins, Tse1–3. Here, we demonstrate the independent contribution of the three H1-T6SS co-regulated vgrG genes, vgrG1abc, to bacterial killing. A putative toxin is encoded in the vicinity of each vgrG gene, supporting the concept of specific VgrG/toxin couples. In this respect, VgrG1c is involved in the delivery of an Rhs protein, RhsP1. The RhsP1 C terminus carries a toxic activity, from which the producing bacterium is protected by a cognate immunity. Similarly, VgrG1a-dependent toxicity is associated with the PA0093 gene encoding a two-domain protein with a putative toxin domain (Toxin_61) at the C terminus. Finally, VgrG1b-dependent killing is detectable upon complementation of a triple vgrG1abc mutant. The VgrG1b-dependent killing is mediated by PA0099, which presents the characteristics of the superfamily nuclease 2 toxin members. Overall, these data develop the concept that VgrGs are indispensable components for the specific delivery of effectors. Several additional vgrG genes are encoded on the P. aeruginosa genome and are not linked genetically to other T6SS genes. A closer inspection of these clusters reveals that they also encode putative toxins. Overall, these associations further support the notion of an original form of secretion system, in which VgrG acts as the carrier.  相似文献   

17.
鲍曼不动杆菌是一种革兰氏阴性的非发酵致病菌,在医院环境中广泛存在,并且已经成为医院获得性感染的重要病原体之一。近年来,由于抗菌药物的广泛应用,导致多重耐药鲍曼不动杆菌引起的感染和暴发流行,给临床治疗带来了极大的挑战。有研究表明,细菌Ⅵ型分泌系统与细菌的致病性相关。本文综述了鲍曼不动杆菌Ⅵ型分泌系统及主要功能蛋白(溶血素-联合调节蛋白)的研究进展,以期为进一步研究鲍曼不动杆菌的致病机制提供基础。  相似文献   

18.
The type VI secretion toolkit   总被引:2,自引:0,他引:2  
Cascales E 《EMBO reports》2008,9(8):735-741
Bacterial secretion systems are macromolecular complexes that release virulence factors into the medium or translocate them into the target host cell. These systems are widespread in bacteria allowing them to infect eukaryotic cells and survive or replicate within them. A new secretion system, the type VI secretion system (T6SS), was recently described and characterized in several pathogens. Genomic data suggest that T6SS exist in most bacteria that come into close contact with eukaryotic cells, including plant and animal pathogens. Many research groups are now investigating the underlying mechanisms and the way in which the effector proteins translocated through this machine subvert host defences. This review provides an overview of our current knowledge about type VI secretion, focusing on gene regulation, components of the secretion machine, substrate secretion and the cellular consequences for the host cell.  相似文献   

19.
Virulence-associated type III secretion systems (T3SS) are utilized by Gram negative bacterial pathogens for injection of effector proteins into eukaryotic host cells. The transmembrane export apparatus at the core of T3SS is composed of a unique helical complex of the hydrophobic proteins SctR, SctS, SctT, and SctU. These components comprise a number of highly conserved charged residues within their hydrophobic domains. The structure of the closed state of the core complex SctR5S4T1 revealed that several of these residues form inter- and intramolecular salt bridges, some of which have to be broken for pore opening. Mutagenesis of individual residues was shown to compromise assembly or secretion of both, the virulence-associated and the related flagellar T3SS. However, the exact role of these conserved charged residues in the assembly and function of T3SS remains elusive. Here we performed an in-depth mutagenesis analysis of these residues in the T3SS of Salmonella Typhimurium, coupled to blue native PAGE, in vivo photocrosslinking and luciferase-based secretion assays. Our data show that these conserved salt bridges are not critical for assembly of the respective protein but rather facilitate the incorporation of the following subunit into the assembling complex. Our data also indicate that these conserved charged residues are critical for type III-dependent secretion and reveal a functional link between SctSE44 and SctTR204 and the cytoplasmic domain of SctU in gating the T3SS injectisome. Overall, our analysis provides an unprecedented insight into the delicate requirements for the assembly and function of the machinery at the core of T3SS.  相似文献   

20.
细菌六型分泌系统的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
六型分泌系统(type VI secretion system, T6SS)作为一种广泛存在于革兰氏阴性细菌中的可收缩纳米装置,通过将有毒物质,即效应因子(effector)注射于真核或原核细胞体内,杀死真核捕食者或原核竞争对手.近年来,T6SS基因的多样性、纳米装置的组装和效应因子的致病机制等都获得了广泛关注,取得了重大的突破.本综述基于T6SS的基因组成、组件装配、效应因子种类和调节机制等,分析总结T6SS基因组成的多样性,不同元件组装机制和对应的结构基础,效应因子种类和致病机理,以及T6SS复杂的调控网络等方面的研究进展和未解决的问题,以期为T6SS的研究提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号