首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteins encoded by psaA and psaB form a heterodimer, an essential compound of photosystem; while the protein encoded by psbC binds with chlorophyll a in photosystem II, serving as antennae in photosystem. Here we report that a heterocyclic brominated flame retardant, tris(2,3-dibromopropyl) isocyanurate (TBC), inhibited the expression of psaA and psbC, then leads to the decrease of Nannochloropsis sp.'s growth biomass. TBC exposure inhibited the expression of psaA and psbC at 10, 100 ng/mL slightly and 1000 ng/mL significantly. In addition, TBC was found to slow down the growth of Nannochloropsis sp. at concentrations ranging from 10 to 1000 ng/mL. These results indicated that TBC influenced both photosynthesis and growth performance of Nannochloropsis sp.  相似文献   

2.
When grown heterotrophically in the dark on enriched culture medium, the pigment-deficient strain of Scenedesmus obliquus, mutant C-6E, is uniquely characterized by a complete deficiency in carotenoids and chlorophyll b while retaining a low level of chlorophyll a which is exclusively utilized in photosystem I-type reactions. The strain lacks photosystem II activity but exhibits all PS-I reactions tested, including P700 redox reactions, photoreduction of CO2 with hydrogen as electron donor, and O2 uptake following methyl viologen reduction. The mutant contains 10 times more P700 per chlorophyll than the wild type and develops the pigment-protein complex of PS-I, CP-I. The action spectrum for methyl viologen reduction compares favorable to the low temperature absorption spectrum of whole cells. Both the chlorophyll fluorescence excitation and emission spectra of pigment-protein complexes derived from cells of C-6E show patterns typical of PS-I. The strain lacks the LHCs and CP-II as well as their respective apoproteins. The absence of carotenoids appears to prevent the development of the normal variety of pigment-protein complexes and the accumulation of Chl b. This inability is also expressed by the presence of only single stranded thylakoid membranes in the chloroplast of C-6E. When heterotrophically grown cells of this mutant are exposed to white light of 8 or 22 W m?2, 50% of its chlorophyll is lost by photooxidation within 4 or 1.5 hours, respectively.  相似文献   

3.
Dynamic reorganization of photosystems I and II is suggested to occur in chloroplast thylakoid membranes to maintain the efficiency of photosynthesis under fluctuating light conditions. To directly observe the process in action, live-cell imaging techniques are necessary. Using live-cell imaging, we have shown that the fine thylakoid structures in the moss Physcomitrella patens are flexible in time. However, the spatiotemporal resolution of a conventional confocal microscopy limits more precise visualization of entire thylakoid structures and understanding of the structural dynamics. Here, we discuss the issues related to observing chlorophyll fluorescence at multiple spatiotemporal scales in vivo and in vitro.  相似文献   

4.
Vello Oja 《BBA》2004,1658(3):225-234
We describe a method of reductive titration of photosystem I (PSI) density in leaves by generating a known amount of electrons (e) in photosystem II (PSII) and measuring the resulting change in optical signal as these electrons arrive at pre-oxidized PSI. The method complements a recently published method of oxidative titration of PSI donor side e carriers P700, plastocyanin (PC) and cytochrome f by illuminating a darkened leaf with far-red light (FRL) [V. Oja, H. Eichelmann, R.B. Peterson, B. Rasulov, A. Laisk, Decyphering the 820 nm signal: redox state of donor side and quantum yield of photosystem I in leaves, Photosynth. Res. 78 (2003) 1-15], presenting a nondestructive way for the determination of PSI density in intact leaves. Experiments were carried out on leaves of birch (Betula pendula Roth) and several other species grown outdoors. Single-turnover flashes of different quantum dose were applied to leaves illuminated with FRL, and the FRL was shuttered off immediately after the flash. The number of e generated in PSII by the flash was measured as four times O2 evolution following the flash. Reduction of the pre-oxidized P700 and PC was followed as a change in leaf transmittance using a dual-wavelength detector ED P700DW (810 minus 950 nm, H. Walz, Effeltrich, Germany). The ED P700DW signal was deconvoluted into P700+ and PC+ components using the abovementioned oxidative titration method. The P700+ component was related to the absolute number of e that reduced the P700+ to calculate the extinction coefficient. The effective differential extinction coefficient of P700+ at 810-950 nm was 0.40±0.06 (S.D.)% of transmittance change per μmol P700+ m−2 or 17.6±2.4 mM−1 cm−1. The result shows that the scattering medium of the leaf effectively increases the extinction coefficient by about two times and its variation (±14% S.D.) is mainly caused by light-scattering properties of the leaf.  相似文献   

5.
Genes encoding proteins of the major light-harvesting complex of photosystem II (LHCII) in higher plants are well studied. However, little is known about the corresponding genes in the green alga Dunaliella salina, although this knowledge might provide valuable information about the respective roles of each LHCII protein at the molecular level under extreme environmental conditions. Here, we describe an additional LhcII gene from D. salina. An LhcII cDNA cloned by screening a D. salina cDNA library contains an open reading frame encoding a protein of 261 amino acids with a calculated molecular mass of 27.8 kDa. The deduced amino acid sequence shows high homology with other LHCII proteins. Genomic DNA—obtained by PCR using a specific primer set corresponding to the 5′ and 3′ untranslated regions—was used to determine the intron-exon structure. Short-term changes in mRNA levels after a shift from low-light to high-light or dark conditions were analyzed by real-time quantitative PCR, and indicated that this gene expresses different mRNA levels under different light conditions.  相似文献   

6.
Saber Hamdani 《BBA》2009,1787(10):1223-1229
The interaction of methylamine with chloroplasts' photosystem II (PSII) was studied in isolated thylakoid membranes. Low concentration of methylamine (mM range) was shown to affect water oxidation and the advancement of the S-states. Modified kinetics of chlorophyll fluorescence rise and thermoluminescence in the presence of methylamine indicated that the electron transfer was affected at both sides of PSII, and in particular the electron transfer between YZ and P680+. As the concentration of methylamine was raised above 10 mM, the extrinsic polypeptides associated with the oxygen-evolving complex were lost and energy transfer between PSII antenna complexes and reaction centers was impaired. It was concluded that methylamine is able to affect both extrinsic and intrinsic subunits of PSII even at the lowest concentrations used where the extrinsic polypeptides of the OEC are still associated with the luminal side of the photosystem. As methylamine concentration increases, the extrinsic polypeptides are lost and the interaction with intrinsic domains is amplified resulting in an increased F0.  相似文献   

7.
Chloroplastic heterocomplex consisting of AtFtsH1, 2, 5 and 8 proteases, integrally bound to thylakoid membrane was shown to play a critical role in degradation of photodamaged PsbA molecules, inherent to photosystem II (PSII) repair cycle and in plastid development. As no one thylakoid bound apoproteins besides PsbA has been identified as target for the heterocomplex-mediated degradation we investigated the significance of this protease complex in degradation of apoproteins of the major light harvesting complex of photosystem II (LHCII) in response to various stressing conditions and in stress-related changes in overall composition of LHCII trimers of PSII-enriched membranes (BBY particles). To reach this goal a combination of approaches was applied based on immunoblotting, in vitro degradation and non-denaturing isoelectrofocusing. Exposure of Arabidopsis thaliana leaves to desiccation, cold and high irradiance led to a step-wise disappearance of Lhcb1 and Lhcb2, while Lhcb3 level remained unchanged, except for high irradiance which caused significant Lhcb3 decrease. Furthermore, it was demonstrated that stress-dependent disappearance of Lhcb1–3 is a proteolytic phenomenon for which a metalloprotease is responsible. No changes in Lhcb1–3 level were observed due to exposition of var1-1 mutant leaves to the three stresses clearly pointing to the involvement of AtFtsH heterocomplex in the desiccation, cold and high irradiance-dependent degradation of Lhcb1 and Lhcb2 and in high irradiance-dependent degradation of Lhcb3. Non-denaturing isoelectrofocusing analyses revealed that AtFtsH heterocomplex-dependent differential Lhcb1–3 disappearance behaviour following desiccation stress was accompanied by modulations in abundances of individual LHCII trimers of BBY particles and that LHCII of var1-1 resisted the modulations.  相似文献   

8.
A novel chlorophyll a containing pigment–protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~ 20 kDa proteins of the light–harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705 nm at room temperature in addition to the main chlorophyll a maximum at 677 nm producing the major emission band at 714 nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700 nm unrelated to LHCI.  相似文献   

9.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740+ − P740) and (FA/B − FA/B) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740+A1 − P740A1) and (3P740 − P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A1), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450 ± 10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000 ± 4000 M− 1 cm− 1 at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1:~ 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

10.
Reversible phosphorylation of photosystem II (PSII) proteins is an important regulatory mechanism that can protect plants from changes in ambient light intensity and quality. We hypothesized that there is natural variation in this process in Arabidopsis (Arabidopsis thaliana), and that this results from genetic variation in the STN7 and STN8 kinase genes. To test this, Arabidopsis accessions of diverse geographical origins were exposed to two light regimes, and the levels of phospho-D1 and phospho-light harvesting complex II (LHCII) proteins were quantified by western blotting with anti-phosphothreonine antibodies. Accessions were classified as having high, moderate or low phosphorylation relative to Col-0. This variation could not be explained by the abundance of the substrates in thylakoid membranes. In genotypes with atrazine-resistant forms of the D1 protein, low D1 and LHCII protein phosphorylation was observed, which may be due to low PSII efficiency, resulting in reduced activation of the STN kinases. In the remaining genotypes, phospho-D1 levels correlated with STN8 protein abundance in high-light conditions. In growth light, D1 and LHCII phosphorylation correlated with longitude and in the case of LHCII phosphorylation also with temperature variability. This suggests a possible role of natural variation in PSII protein phosphorylation in the adaptation of Arabidopsis to diverse environments.  相似文献   

11.
Hugo Pettai  Arvi Freiberg  Agu Laisk 《BBA》2005,1708(3):311-321
We have found that long-wavelength quanta up to 780 nm support oxygen evolution from the leaves of sunflower and bean. The far-red light excitations are supporting the photochemical activity of photosystem II, as is indicated by the increased chlorophyll fluorescence in response to the reduction of the photosystem II primary electron acceptor, QA. The results also demonstrate that the far-red photosystem II excitations are susceptible to non-photochemical quenching, although less than the red excitations. Uphill activation energies of 9.8 ± 0.5 kJ mol−1 and 12.5 ± 0.7 kJ mol−1 have been revealed in sunflower leaves for the 716 and 740 nm illumination, respectively, from the temperature dependencies of quantum yields, comparable to the corresponding energy gaps of 8.8 and 14.3 kJ mol−1 between the 716 and 680 nm, and the 740 and 680 nm light quanta. Similarly, the non-photochemical quenching of far-red excitations is facilitated by temperature confirming thermal activation of the far-red quanta to the photosystem II core. The observations are discussed in terms of as yet undisclosed far-red forms of chlorophyll in the photosystem II antenna, reversed (uphill) spill-over of excitation from photosystem I antenna to the photosystem II antenna, as well as absorption from thermally populated vibrational sub-levels of photosystem II chlorophylls in the ground electronic state. From these three interpretations, our analysis favours the first one, i.e., the presence in intact plant leaves of a small number of far-red chlorophylls of photosystem II. Based on analogy with the well-known far-red spectral forms in photosystem I, it is likely that some kind of strongly coupled chlorophyll dimers/aggregates are involved. The similarity of the result for sunflower and bean proves that both the extreme long-wavelength oxygen evolution and the local quantum yield maximum are general properties of the plants.  相似文献   

12.
Daping Yang  Chen Min 《BBA》2010,1797(2):204-211
The gene encoding a chlorophyll d-binding light-harvesting protein, pcbA from Acaryochloris marina (now called as accessory Chlorophyll Binding Protein CBPII) marked with a His-tag was transformed into the genome of Synechocystis PCC6803. Protein gel electrophoresis and western blotting confirmed that this foreign chlorophyll d-binding protein CBPII was expressed and integrated into the thylakoid membrane and bound with chlorophyll a, the only type of chlorophyll present in Synechocystis PCC 6803. Native electrophoresis suggested that CBPII interacts with photosystem II of Synechocystis PCC 6803. Surprisingly, spectral analyses showed that the phycobiliproteins were suppressed in the transformed Synechocystis pcbA+, with a lower ratio of phycobilins to chlorophyll a. These results suggest that there are competitive interactions between the external antenna system of phycobiliproteins and the integral antenna system of chlorophyll-bound protein complexes.  相似文献   

13.
In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx–Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300 fs. Chl c transferred excitation energy to Chl a with time constants of 500–600 fs (intra-complex transfer), 600–700 fs (intra-complex transfer), and 4–6 ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

14.
15.
The Stay-Green Rice (SGR) protein is encoded by the SGR gene and has been shown to affect chlorophyll (Chl) degradation during natural and dark-induced leaf senescence. An SGR homologue, SGR-like (SGRL), has been detected in many plant species. We show that SGRL is primarily expressed in green tissues, and is significantly downregulated in rice leaves undergoing natural and dark-induced senescence. As the light intensity increases during the natural photoperiod, the intensity of SGRL expression declines while that of SGR expression increases. Overexpression of SGRL reduces the levels of Chl and Chl-binding proteins in leaves, and accelerates their degradation in dark-induced senescence leaves in rice. Our results suggest that the SGRL protein is also involved in Chl degradation. The relationship between SGRL and SGR and their effects on the degradation of the light-harvesting Chl a/b-binding protein are also discussed.  相似文献   

16.
The influence of the histidine axial ligand to the PD1 chlorophyll of photosystem II on the redox potential and spectroscopic properties of the primary electron donor, P680, was investigated in mutant oxygen-evolving photosystem II (PSII) complexes purified from the thermophilic cyanobacterium Thermosynechococcus elongatus. To achieve this aim, a mutagenesis system was developed in which the psbA1 and psbA2 genes encoding D1 were deleted from a His-tagged CP43 strain (to generate strain WT?) and mutations D1-H198A and D1-H198Q were introduced into the remaining psbA3 gene. The O2-evolving activity of His-tagged PSII isolated from WT? was found to be significantly higher than that measured from His-tagged PSII isolated from WT in which psbA1 is expected to be the dominantly expressed form. PSII purified from both the D1-H198A and D1-H198Q mutants exhibited oxygen-evolving activity as high as that from WT?. Surprisingly, a variety of kinetic and spectroscopic measurements revealed that the D1-H198A and D1-H198Q mutations had little effect on the redox and spectroscopic properties of P680, in contrast to the earlier results from the analysis of the equivalent mutants constructed in Synechocystis sp. PCC 6803 [B.A. Diner, E. Schlodder, P.J. Nixon, W.J. Coleman, F. Rappaport, J. Lavergne, W.F. Vermaas, D.A. Chisholm, Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization, Biochemistry 40 (2001) 9265-9281]. We conclude that the nature of the axial ligand to PD1 is not an important determinant of the redox and spectroscopic properties of P680 in T. elongatus.  相似文献   

17.
The magnesium atom of chlorophylls (Chls) is always five- or six-coordinated within chlorophyll-protein complexes which are the main light-harvesting systems of plants, algae and most photosynthetic bacteria. Due to the presence of stereocenters and the axial ligation of magnesium the two faces of Chls are diastereotopic. It has been previously recognized that the α-configuration having the magnesium ligand on the opposite face of the 17-propionic acid moiety is more frequently encountered and is more stable than the more seldom β-configuration that has the magnesium ligand on the same face [T.S. Balaban, P. Fromme, A.R. Holzwarth, N. Krauβ, V.I. Prokhorenko, Relevance of the diastereotopic ligation of magnesium atoms in chlorophylls in Photosystem I, Biochim. Biophys. Acta (Bioenergetics), 1556 (2002) 197-207; T. Oba, H. Tamiaki, Which side of the π-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Photosynth. Res. 74 (2002) 1-10]. In photosystem I only 14 Chls out of a total of 96 are in a β-configuration and these occupy preferential positions around the reaction center. We have now analyzed the α/β dichotomy in the homodimeric photosystem II based on the 2.9 Å resolution crystal structure [A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Cyanobacterial photosystem II at 2.9 Å resolution: role of quinones, lipids, channels and chloride, Nature Struct. Mol. Biol. 16 (2009) 334-342] and find that out of 35 Chls in each monomer only 9 are definitively in the β-configuration, while 4 are uncertain. Ab initio calculations using the approximate coupled-cluster singles-and-doubles model CC2 [O. Christiansen, H. Koch, P. Jørgensen, The second-order approximate coupled cluster singles and doubles model CC2, Chem. Phys. Lett. 243 (1995) 409-418] now correctly predict the absorption spectra of Chls a and b and conclusively show for histidine, which is the most frequent axial ligand of magnesium in chlorophyll-protein complexes, that only slight differences (< 4 nm) are encountered between the α- and β-configurations. Significant red shifts (up to 50 nm) can, however, be encountered in excitonically coupled β-β-Chl dimers. Surprisingly, in both photosystems I and II very similar “special” β-β dimers are encountered at practically the same distances from P700 and P680, respectively. In purple bacteria LH2, the B850 ring is composed exclusively of such tightly coupled β-bacteriochlorophylls a. A statistical analysis of the close contacts with the protein matrix (< 5 Å) shows significant differences between the α- and β-configurations and the subunit providing the axial magnesium ligand. The present study allows us to conclude that the excitation energy transfer in light-harvesting systems, from a peripheral antenna towards the reaction center, may follow preferential pathways due to structural reasons involving β-ligated Chls.  相似文献   

18.
Beth Szyszka 《BBA》2007,1767(6):789-800
Chlamydomonas raudensis UWO 241 and SAG 49.72 represent the psychrophilic and mesophilic strains of this green algal species. This novel discovery was exploited to assess the role of psychrophily in photoacclimation to growth temperature and growth irradiance. At their optimal growth temperatures of 8 °C and 28 °C respectively, UWO 241 and SAG 49.72 maintained comparable photostasis, that is energy balance, as measured by PSII excitation pressure. Although UWO 241 exhibited higher excitation pressure, measured as 1-qL, at all growth light intensities, the relative changes in 1-qL were similar to that of SAG 49.72 in response to growth light. In response to suboptimal temperatures and increased growth irradiance, SAG 49.72 favoured energy partitioning of excess excitation energy through inducible, down regulatory processes (ΦNPQ) associated with the xanthophyll cycle and antenna quenching, while UWO 241 favoured xanthophyll cycle-independent energy partitioning through constitutive processes involved in energy dissipation (ΦNO). In contrast to SAG 49.72, an elevation in growth temperature induced an increase in PSI/PSII stoichiometry in UWO 241. Furthermore, SAG 49.72 showed typical threonine-phosphorylation of LHCII, whereas UWO 241 exhibited phosphorylation of polypeptides of comparable molecular mass to PSI reaction centres but the absence of LHCII phosphorylation. Thus, although both strains maintain an energy balance irrespective of their differences in optimal growth temperatures, the mechanisms used to maintain photostasis were distinct. We conclude that psychrophily in C. raudensis is complex and appears to involve differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation.  相似文献   

19.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

20.

Background and Aims

Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the transporter responsible for the uptake of Fe(III)–PS complexes from the soil. Some members of the family of related proteins called Yellow Stripe-Like (YSL) have roles in internal Fe translocation of plants, while the function of other members remains uninvestigated. The aim of this study is to establish brachypodium as a model system to study Fe homeostasis in grasses, identify YSL proteins in brachypodium and maize, and analyse their expression profiles in brachypodium in response to Fe deficiency.

Methods

The YSL family of proteins in brachypodium and maize were identified based on sequence similarity to ZmYS1. Expression patterns of the brachypodium YSL genes (BdYSL genes) were determined by quantitative RT–PCR under Fe-deficient and Fe-sufficient conditions. The types of PS secreted, and secretion pattern of PS in brachypodium were analysed by high-performance liquid chromatography.

Key Results

Eighteen YSL family members in maize and 19 members in brachypodium were identified. Phylogenetic analysis revealed that some YSLs group into a grass-specific clade. The Fe status of the plant can regulate expression of brachypodium YSL genes in both shoots and roots. 3-Hydroxy-2′-deoxymugineic acid (HDMA) is the dominant type of PS secreted by brachypodium, and its secretion is diurnally regulated.

Conclusions

PS secretion by brachypodium parallels that of related crop species such as barley and wheat. A single grass species-specific YSL clade is present, and expression of the BdYSL members of this clade could not be detected in shoots or roots, suggesting grass-specific functions in reproductive tissues. Finally, the Fe-responsive expression profiles of several YSLs suggest roles in Fe homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号